featrue:添加大量新统计指标

pull/1356/head
SengokuCola 2025-11-11 01:19:09 +08:00
parent 26784b00a5
commit 17e6a215d8
2 changed files with 500 additions and 22 deletions

View File

@ -1,5 +1,6 @@
import asyncio
import concurrent.futures
import json
from collections import defaultdict
from datetime import datetime, timedelta
@ -10,6 +11,7 @@ from src.common.database.database import db
from src.common.database.database_model import OnlineTime, LLMUsage, Messages
from src.manager.async_task_manager import AsyncTask
from src.manager.local_store_manager import local_storage
from src.config.config import global_config
logger = get_logger("maibot_statistic")
@ -51,6 +53,7 @@ STD_TIME_COST_BY_MODULE = "std_time_costs_by_module"
ONLINE_TIME = "online_time"
TOTAL_MSG_CNT = "total_messages"
MSG_CNT_BY_CHAT = "messages_by_chat"
TOTAL_REPLY_CNT = "total_replies"
class OnlineTimeRecordTask(AsyncTask):
@ -134,6 +137,37 @@ def _format_online_time(online_seconds: int) -> str:
return f"{minutes}分钟{seconds}"
def _format_large_number(num: float | int, html: bool = False) -> str:
"""
格式化大数字使用K后缀节省空间大于9999时
:param num: 要格式化的数字
:param html: 是否用于HTML输出如果是K会着色
:return: 格式化后的字符串 12K, 1.3K, 120K
"""
if num >= 10000:
# 大于等于10000使用K后缀
value = num / 1000.0
if value >= 10:
number_part = str(int(value))
k_suffix = "K"
else:
number_part = f"{value:.1f}"
k_suffix = "K"
if html:
# HTML输出K着色为主题色并加粗大写
return f"{number_part}<span style='color: #8b5cf6; font-weight: bold;'>K</span>"
else:
# 控制台输出纯文本K大写
return f"{number_part}{k_suffix}"
else:
# 小于10000直接显示
if isinstance(num, float):
return f"{num:.1f}" if num != int(num) else str(int(num))
else:
return str(num)
class StatisticOutputTask(AsyncTask):
"""统计输出任务"""
@ -464,9 +498,13 @@ class StatisticOutputTask(AsyncTask):
period_key: {
TOTAL_MSG_CNT: 0,
MSG_CNT_BY_CHAT: defaultdict(int),
TOTAL_REPLY_CNT: 0,
}
for period_key, _ in collect_period
}
# 获取bot的QQ账号
bot_qq_account = str(global_config.bot.qq_account) if hasattr(global_config, 'bot') and hasattr(global_config.bot, 'qq_account') else ""
query_start_timestamp = collect_period[-1][1].timestamp() # Messages.time is a DoubleField (timestamp)
for message in Messages.select().where(Messages.time >= query_start_timestamp): # type: ignore
@ -505,11 +543,18 @@ class StatisticOutputTask(AsyncTask):
# 重置为正确的格式
self.name_mapping[chat_id] = (chat_name, message_time_ts)
# 检查是否是bot发送的消息回复
is_bot_reply = False
if bot_qq_account and message.user_id == bot_qq_account:
is_bot_reply = True
for idx, (_, period_start_dt) in enumerate(collect_period):
if message_time_ts >= period_start_dt.timestamp():
for period_key, _ in collect_period[idx:]:
stats[period_key][TOTAL_MSG_CNT] += 1
stats[period_key][MSG_CNT_BY_CHAT][chat_id] += 1
if is_bot_reply:
stats[period_key][TOTAL_REPLY_CNT] += 1
break
return stats
@ -635,12 +680,42 @@ class StatisticOutputTask(AsyncTask):
"""
格式化总统计数据
"""
# 计算总token数从所有模型的token数中累加
total_tokens = sum(stats[TOTAL_TOK_BY_MODEL].values()) if stats[TOTAL_TOK_BY_MODEL] else 0
# 计算花费/消息数量指标每100条
cost_per_100_messages = (stats[TOTAL_COST] / stats[TOTAL_MSG_CNT] * 100) if stats[TOTAL_MSG_CNT] > 0 else 0.0
# 计算花费/时间指标(花费/小时)
online_hours = stats[ONLINE_TIME] / 3600.0 if stats[ONLINE_TIME] > 0 else 0.0
cost_per_hour = stats[TOTAL_COST] / online_hours if online_hours > 0 else 0.0
# 计算token/消息数量指标每100条
tokens_per_100_messages = (total_tokens / stats[TOTAL_MSG_CNT] * 100) if stats[TOTAL_MSG_CNT] > 0 else 0.0
# 计算token/时间指标token/小时)
tokens_per_hour = (total_tokens / online_hours) if online_hours > 0 else 0.0
# 计算花费/回复数量指标每100条
total_replies = stats.get(TOTAL_REPLY_CNT, 0)
cost_per_100_replies = (stats[TOTAL_COST] / total_replies * 100) if total_replies > 0 else 0.0
# 计算token/回复数量指标每100条
tokens_per_100_replies = (total_tokens / total_replies * 100) if total_replies > 0 else 0.0
output = [
f"总在线时间: {_format_online_time(stats[ONLINE_TIME])}",
f"总消息数: {stats[TOTAL_MSG_CNT]}",
f"总请求数: {stats[TOTAL_REQ_CNT]}",
f"总消息数: {_format_large_number(stats[TOTAL_MSG_CNT])}",
f"总回复数: {_format_large_number(total_replies)}",
f"总请求数: {_format_large_number(stats[TOTAL_REQ_CNT])}",
f"总Token数: {_format_large_number(total_tokens)}",
f"总花费: {stats[TOTAL_COST]:.2f}¥",
f"花费/消息数量: {cost_per_100_messages:.4f}¥/100条" if stats[TOTAL_MSG_CNT] > 0 else "花费/消息数量: N/A",
f"花费/回复数量: {cost_per_100_replies:.4f}¥/100条" if total_replies > 0 else "花费/回复数量: N/A",
f"花费/时间: {cost_per_hour:.2f}¥/小时" if online_hours > 0 else "花费/时间: N/A",
f"Token/消息数量: {_format_large_number(tokens_per_100_messages)}/100条" if stats[TOTAL_MSG_CNT] > 0 else "Token/消息数量: N/A",
f"Token/回复数量: {_format_large_number(tokens_per_100_replies)}/100条" if total_replies > 0 else "Token/回复数量: N/A",
f"Token/时间: {_format_large_number(tokens_per_hour)}/小时" if online_hours > 0 else "Token/时间: N/A",
"",
]
@ -667,8 +742,13 @@ class StatisticOutputTask(AsyncTask):
cost = stats[COST_BY_MODEL][model_name]
avg_time_cost = stats[AVG_TIME_COST_BY_MODEL][model_name]
std_time_cost = stats[STD_TIME_COST_BY_MODEL][model_name]
# 格式化大数字
formatted_count = _format_large_number(count)
formatted_in_tokens = _format_large_number(in_tokens)
formatted_out_tokens = _format_large_number(out_tokens)
formatted_tokens = _format_large_number(tokens)
output.append(
data_fmt.format(name, count, in_tokens, out_tokens, tokens, cost, avg_time_cost, std_time_cost)
data_fmt.format(name, formatted_count, formatted_in_tokens, formatted_out_tokens, formatted_tokens, cost, avg_time_cost, std_time_cost)
)
output.append("")
@ -684,10 +764,12 @@ class StatisticOutputTask(AsyncTask):
for chat_id, count in sorted(stats[MSG_CNT_BY_CHAT].items()):
try:
chat_name = self.name_mapping.get(chat_id, ("未知聊天", 0))[0]
output.append(f"{chat_name[:32]:<32} {count:>10}")
formatted_count = _format_large_number(count)
output.append(f"{chat_name[:32]:<32} {formatted_count:>10}")
except (IndexError, TypeError) as e:
logger.warning(f"格式化聊天统计时发生错误chat_id: {chat_id}, 错误: {e}")
output.append(f"{'未知聊天':<32} {count:>10}")
formatted_count = _format_large_number(count)
output.append(f"{'未知聊天':<32} {formatted_count:>10}")
output.append("")
return "\n".join(output)
@ -737,6 +819,7 @@ class StatisticOutputTask(AsyncTask):
for period in self.stat_period
]
tab_list.append('<button class="tab-link" onclick="showTab(event, \'charts\')">数据图表</button>')
tab_list.append('<button class="tab-link" onclick="showTab(event, \'metrics\')">指标趋势</button>')
def _format_stat_data(stat_data: dict[str, Any], div_id: str, start_time: datetime) -> str:
"""
@ -752,10 +835,10 @@ class StatisticOutputTask(AsyncTask):
[
f"<tr>"
f"<td>{model_name}</td>"
f"<td>{count}</td>"
f"<td>{stat_data[IN_TOK_BY_MODEL][model_name]}</td>"
f"<td>{stat_data[OUT_TOK_BY_MODEL][model_name]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_MODEL][model_name]}</td>"
f"<td>{_format_large_number(count, html=True)}</td>"
f"<td>{_format_large_number(stat_data[IN_TOK_BY_MODEL][model_name], html=True)}</td>"
f"<td>{_format_large_number(stat_data[OUT_TOK_BY_MODEL][model_name], html=True)}</td>"
f"<td>{_format_large_number(stat_data[TOTAL_TOK_BY_MODEL][model_name], html=True)}</td>"
f"<td>{stat_data[COST_BY_MODEL][model_name]:.2f} ¥</td>"
f"<td>{stat_data[AVG_TIME_COST_BY_MODEL][model_name]:.1f} 秒</td>"
f"<td>{stat_data[STD_TIME_COST_BY_MODEL][model_name]:.1f} 秒</td>"
@ -770,10 +853,10 @@ class StatisticOutputTask(AsyncTask):
[
f"<tr>"
f"<td>{req_type}</td>"
f"<td>{count}</td>"
f"<td>{stat_data[IN_TOK_BY_TYPE][req_type]}</td>"
f"<td>{stat_data[OUT_TOK_BY_TYPE][req_type]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_TYPE][req_type]}</td>"
f"<td>{_format_large_number(count, html=True)}</td>"
f"<td>{_format_large_number(stat_data[IN_TOK_BY_TYPE][req_type], html=True)}</td>"
f"<td>{_format_large_number(stat_data[OUT_TOK_BY_TYPE][req_type], html=True)}</td>"
f"<td>{_format_large_number(stat_data[TOTAL_TOK_BY_TYPE][req_type], html=True)}</td>"
f"<td>{stat_data[COST_BY_TYPE][req_type]:.2f} ¥</td>"
f"<td>{stat_data[AVG_TIME_COST_BY_TYPE][req_type]:.1f} 秒</td>"
f"<td>{stat_data[STD_TIME_COST_BY_TYPE][req_type]:.1f} 秒</td>"
@ -788,10 +871,10 @@ class StatisticOutputTask(AsyncTask):
[
f"<tr>"
f"<td>{module_name}</td>"
f"<td>{count}</td>"
f"<td>{stat_data[IN_TOK_BY_MODULE][module_name]}</td>"
f"<td>{stat_data[OUT_TOK_BY_MODULE][module_name]}</td>"
f"<td>{stat_data[TOTAL_TOK_BY_MODULE][module_name]}</td>"
f"<td>{_format_large_number(count, html=True)}</td>"
f"<td>{_format_large_number(stat_data[IN_TOK_BY_MODULE][module_name], html=True)}</td>"
f"<td>{_format_large_number(stat_data[OUT_TOK_BY_MODULE][module_name], html=True)}</td>"
f"<td>{_format_large_number(stat_data[TOTAL_TOK_BY_MODULE][module_name], html=True)}</td>"
f"<td>{stat_data[COST_BY_MODULE][module_name]:.2f} ¥</td>"
f"<td>{stat_data[AVG_TIME_COST_BY_MODULE][module_name]:.1f} 秒</td>"
f"<td>{stat_data[STD_TIME_COST_BY_MODULE][module_name]:.1f} 秒</td>"
@ -807,10 +890,10 @@ class StatisticOutputTask(AsyncTask):
for chat_id, count in sorted(stat_data[MSG_CNT_BY_CHAT].items()):
try:
chat_name = self.name_mapping.get(chat_id, ("未知聊天", 0))[0]
chat_rows.append(f"<tr><td>{chat_name}</td><td>{count}</td></tr>")
chat_rows.append(f"<tr><td>{chat_name}</td><td>{_format_large_number(count, html=True)}</td></tr>")
except (IndexError, TypeError) as e:
logger.warning(f"生成HTML聊天统计时发生错误chat_id: {chat_id}, 错误: {e}")
chat_rows.append(f"<tr><td>未知聊天</td><td>{count}</td></tr>")
chat_rows.append(f"<tr><td>未知聊天</td><td>{_format_large_number(count, html=True)}</td></tr>")
chat_rows_html = "\n".join(chat_rows) if chat_rows else "<tr><td colspan='2' style='text-align: center; color: #999;'>暂无数据</td></tr>"
# 生成HTML
@ -827,16 +910,48 @@ class StatisticOutputTask(AsyncTask):
</div>
<div class=\"kpi-card\">
<div class=\"kpi-title\">总消息数</div>
<div class=\"kpi-value\">{stat_data[TOTAL_MSG_CNT]}</div>
<div class=\"kpi-value\">{_format_large_number(stat_data[TOTAL_MSG_CNT], html=True)}</div>
</div>
<div class=\"kpi-card\">
<div class=\"kpi-title\">总回复数</div>
<div class=\"kpi-value\">{_format_large_number(stat_data.get(TOTAL_REPLY_CNT, 0), html=True)}</div>
</div>
<div class=\"kpi-card\">
<div class=\"kpi-title\">总请求数</div>
<div class=\"kpi-value\">{stat_data[TOTAL_REQ_CNT]}</div>
<div class=\"kpi-value\">{_format_large_number(stat_data[TOTAL_REQ_CNT], html=True)}</div>
</div>
<div class=\"kpi-card\">
<div class=\"kpi-title\">总Token数</div>
<div class=\"kpi-value\">{_format_large_number(sum(stat_data[TOTAL_TOK_BY_MODEL].values()) if stat_data[TOTAL_TOK_BY_MODEL] else 0, html=True)}</div>
</div>
<div class=\"kpi-card\">
<div class=\"kpi-title\">总花费</div>
<div class=\"kpi-value\">{stat_data[TOTAL_COST]:.2f} ¥</div>
</div>
<div class=\"kpi-card\">
<div class=\"kpi-title\">花费/消息数量</div>
<div class=\"kpi-value\">{(stat_data[TOTAL_COST] / stat_data[TOTAL_MSG_CNT] * 100 if stat_data[TOTAL_MSG_CNT] > 0 else 0.0):.4f} ¥/100条</div>
</div>
<div class=\"kpi-card\">
<div class=\"kpi-title\">花费/时间</div>
<div class=\"kpi-value\">{(stat_data[TOTAL_COST] / (stat_data[ONLINE_TIME] / 3600.0) if stat_data[ONLINE_TIME] > 0 else 0.0):.2f} ¥/小时</div>
</div>
<div class=\"kpi-card\">
<div class=\"kpi-title\">Token/消息数量</div>
<div class=\"kpi-value\">{_format_large_number(sum(stat_data[TOTAL_TOK_BY_MODEL].values()) / stat_data[TOTAL_MSG_CNT] * 100 if stat_data[TOTAL_MSG_CNT] > 0 and stat_data[TOTAL_TOK_BY_MODEL] else 0.0, html=True)}/100条</div>
</div>
<div class=\"kpi-card\">
<div class=\"kpi-title\">Token/回复数量</div>
<div class=\"kpi-value\">{_format_large_number(sum(stat_data[TOTAL_TOK_BY_MODEL].values()) / stat_data.get(TOTAL_REPLY_CNT, 0) * 100 if stat_data.get(TOTAL_REPLY_CNT, 0) > 0 and stat_data[TOTAL_TOK_BY_MODEL] else 0.0, html=True)}/100条</div>
</div>
<div class=\"kpi-card\">
<div class=\"kpi-title\">Token/时间</div>
<div class=\"kpi-value\">{_format_large_number(sum(stat_data[TOTAL_TOK_BY_MODEL].values()) / (stat_data[ONLINE_TIME] / 3600.0) if stat_data[ONLINE_TIME] > 0 and stat_data[TOTAL_TOK_BY_MODEL] else 0.0, html=True)}/小时</div>
</div>
<div class=\"kpi-card\">
<div class=\"kpi-title\">花费/回复数量</div>
<div class=\"kpi-value\">{(stat_data[TOTAL_COST] / stat_data.get(TOTAL_REPLY_CNT, 0) * 100 if stat_data.get(TOTAL_REPLY_CNT, 0) > 0 else 0.0):.4f} ¥/100条</div>
</div>
</div>
<h2>按模型分类统计</h2>
@ -1089,6 +1204,10 @@ class StatisticOutputTask(AsyncTask):
# 添加图表内容
chart_data = self._generate_chart_data(stat)
tab_content_list.append(self._generate_chart_tab(chart_data))
# 添加指标趋势图表
metrics_data = self._generate_metrics_data(now)
tab_content_list.append(self._generate_metrics_tab(metrics_data))
joined_tab_list = "\n".join(tab_list)
joined_tab_content = "\n".join(tab_content_list)
@ -1161,7 +1280,7 @@ class StatisticOutputTask(AsyncTask):
}
.btn:hover { border-color: #9f8efb; color: #7c6bcf; background-color: #f1ecff; }
/* 新增KPI 卡片 */
.kpi-cards { display: grid; grid-template-columns: repeat(4, 1fr); gap: 12px; margin: 12px 0 6px; }
.kpi-cards { display: grid; grid-template-columns: repeat(5, 1fr); gap: 12px; margin: 12px 0 6px; }
.kpi-card {
background: linear-gradient(145deg, #ffffff 0%, #f6f2ff 100%);
border: 1px solid #e3dbff;
@ -1657,6 +1776,352 @@ class StatisticOutputTask(AsyncTask):
</div>
"""
def _generate_metrics_data(self, now: datetime) -> dict:
"""生成指标趋势数据"""
metrics_data = {}
# 24小时尺度1小时为单位
metrics_data["24h"] = self._collect_metrics_interval_data(now, hours=24, interval_hours=1)
# 7天尺度1天为单位
metrics_data["7d"] = self._collect_metrics_interval_data(now, hours=24*7, interval_hours=24)
# 30天尺度1天为单位
metrics_data["30d"] = self._collect_metrics_interval_data(now, hours=24*30, interval_hours=24)
return metrics_data
def _collect_metrics_interval_data(self, now: datetime, hours: int, interval_hours: int) -> dict:
"""收集指定时间范围内每个间隔的指标数据"""
start_time = now - timedelta(hours=hours)
time_points = []
current_time = start_time
# 生成时间点
while current_time <= now:
time_points.append(current_time)
current_time += timedelta(hours=interval_hours)
# 初始化数据结构
cost_per_100_messages = [0.0] * len(time_points) # 花费/消息数量每100条
cost_per_hour = [0.0] * len(time_points) # 花费/时间(每小时)
tokens_per_100_messages = [0.0] * len(time_points) # Token/消息数量每100条
tokens_per_hour = [0.0] * len(time_points) # Token/时间(每小时)
cost_per_100_replies = [0.0] * len(time_points) # 花费/回复数量每100条
tokens_per_100_replies = [0.0] * len(time_points) # Token/回复数量每100条
# 每个时间点的累计数据
total_costs = [0.0] * len(time_points)
total_tokens = [0] * len(time_points)
total_messages = [0] * len(time_points)
total_replies = [0] * len(time_points)
total_online_hours = [0.0] * len(time_points)
# 获取bot的QQ账号
bot_qq_account = str(global_config.bot.qq_account) if hasattr(global_config, 'bot') and hasattr(global_config.bot, 'qq_account') else ""
interval_seconds = interval_hours * 3600
# 查询LLM使用记录
query_start_time = start_time
for record in LLMUsage.select().where(LLMUsage.timestamp >= query_start_time): # type: ignore
record_time = record.timestamp
# 找到对应的时间间隔索引
time_diff = (record_time - start_time).total_seconds()
interval_index = int(time_diff // interval_seconds)
if 0 <= interval_index < len(time_points):
cost = record.cost or 0.0
prompt_tokens = record.prompt_tokens or 0
completion_tokens = record.completion_tokens or 0
total_token = prompt_tokens + completion_tokens
total_costs[interval_index] += cost
total_tokens[interval_index] += total_token
# 查询消息记录
query_start_timestamp = start_time.timestamp()
for message in Messages.select().where(Messages.time >= query_start_timestamp): # type: ignore
message_time_ts = message.time
time_diff = message_time_ts - query_start_timestamp
interval_index = int(time_diff // interval_seconds)
if 0 <= interval_index < len(time_points):
total_messages[interval_index] += 1
# 检查是否是bot发送的消息回复
if bot_qq_account and message.user_id == bot_qq_account:
total_replies[interval_index] += 1
# 查询在线时间记录
for record in OnlineTime.select().where(OnlineTime.end_timestamp >= start_time): # type: ignore
record_start = record.start_timestamp
record_end = record.end_timestamp
# 找到记录覆盖的所有时间间隔
for idx, time_point in enumerate(time_points):
interval_start = time_point
interval_end = time_point + timedelta(hours=interval_hours)
# 计算重叠部分
overlap_start = max(record_start, interval_start)
overlap_end = min(record_end, interval_end)
if overlap_end > overlap_start:
overlap_hours = (overlap_end - overlap_start).total_seconds() / 3600.0
total_online_hours[idx] += overlap_hours
# 计算指标
for idx in range(len(time_points)):
# 花费/消息数量每100条
if total_messages[idx] > 0:
cost_per_100_messages[idx] = (total_costs[idx] / total_messages[idx] * 100)
# 花费/时间(每小时)
if total_online_hours[idx] > 0:
cost_per_hour[idx] = (total_costs[idx] / total_online_hours[idx])
# Token/消息数量每100条
if total_messages[idx] > 0:
tokens_per_100_messages[idx] = (total_tokens[idx] / total_messages[idx] * 100)
# Token/时间(每小时)
if total_online_hours[idx] > 0:
tokens_per_hour[idx] = (total_tokens[idx] / total_online_hours[idx])
# 花费/回复数量每100条
if total_replies[idx] > 0:
cost_per_100_replies[idx] = (total_costs[idx] / total_replies[idx] * 100)
# Token/回复数量每100条
if total_replies[idx] > 0:
tokens_per_100_replies[idx] = (total_tokens[idx] / total_replies[idx] * 100)
# 生成时间标签
if interval_hours == 1:
time_labels = [t.strftime("%H:%M") for t in time_points]
else:
time_labels = [t.strftime("%m-%d") for t in time_points]
return {
"time_labels": time_labels,
"cost_per_100_messages": cost_per_100_messages,
"cost_per_hour": cost_per_hour,
"tokens_per_100_messages": tokens_per_100_messages,
"tokens_per_hour": tokens_per_hour,
"cost_per_100_replies": cost_per_100_replies,
"tokens_per_100_replies": tokens_per_100_replies,
}
def _generate_metrics_tab(self, metrics_data: dict) -> str:
"""生成指标趋势图表选项卡HTML内容"""
colors = {
"cost_per_100_messages": "#8b5cf6",
"cost_per_hour": "#9f8efb",
"tokens_per_100_messages": "#b5a6ff",
"tokens_per_hour": "#c7bbff",
"cost_per_100_replies": "#d9ceff",
"tokens_per_100_replies": "#a78bfa",
}
return f"""
<div id="metrics" class="tab-content">
<h2>指标趋势图表</h2>
<!-- 时间尺度选择按钮 -->
<div style="margin: 20px 0; text-align: center;">
<label style="margin-right: 10px; font-weight: bold;">时间尺度:</label>
<button class="time-scale-btn" onclick="switchMetricsTimeScale('24h')">24小时</button>
<button class="time-scale-btn active" onclick="switchMetricsTimeScale('7d')">7</button>
<button class="time-scale-btn" onclick="switchMetricsTimeScale('30d')">30</button>
</div>
<div style="margin-top: 20px;">
<div style="margin-bottom: 40px;">
<canvas id="costPer100MessagesChart" width="800" height="400"></canvas>
</div>
<div style="margin-bottom: 40px;">
<canvas id="costPerHourChart" width="800" height="400"></canvas>
</div>
<div style="margin-bottom: 40px;">
<canvas id="tokensPer100MessagesChart" width="800" height="400"></canvas>
</div>
<div style="margin-bottom: 40px;">
<canvas id="tokensPerHourChart" width="800" height="400"></canvas>
</div>
<div style="margin-bottom: 40px;">
<canvas id="costPer100RepliesChart" width="800" height="400"></canvas>
</div>
<div>
<canvas id="tokensPer100RepliesChart" width="800" height="400"></canvas>
</div>
</div>
<style>
.time-scale-btn {{
background-color: #ecf0f1;
border: 1px solid #bdc3c7;
color: #2c3e50;
padding: 8px 16px;
margin: 0 5px;
border-radius: 4px;
cursor: pointer;
font-size: 14px;
transition: all 0.3s ease;
}}
.time-scale-btn:hover {{
background-color: #d5dbdb;
}}
.time-scale-btn.active {{
background-color: #8b5cf6;
color: white;
border-color: #7c6bcf;
}}
</style>
<script>
const allMetricsData = {json.dumps(metrics_data)};
let currentMetricsCharts = {{}};
const metricsConfigs = {{
costPer100Messages: {{
id: 'costPer100MessagesChart',
title: '花费/消息数量',
yAxisLabel: '花费 (¥/100条)',
dataKey: 'cost_per_100_messages',
color: '{colors["cost_per_100_messages"]}'
}},
costPerHour: {{
id: 'costPerHourChart',
title: '花费/时间',
yAxisLabel: '花费 (¥/小时)',
dataKey: 'cost_per_hour',
color: '{colors["cost_per_hour"]}'
}},
tokensPer100Messages: {{
id: 'tokensPer100MessagesChart',
title: 'Token/消息数量',
yAxisLabel: 'Token (/100条)',
dataKey: 'tokens_per_100_messages',
color: '{colors["tokens_per_100_messages"]}'
}},
tokensPerHour: {{
id: 'tokensPerHourChart',
title: 'Token/时间',
yAxisLabel: 'Token (/小时)',
dataKey: 'tokens_per_hour',
color: '{colors["tokens_per_hour"]}'
}},
costPer100Replies: {{
id: 'costPer100RepliesChart',
title: '花费/回复数量',
yAxisLabel: '花费 (¥/100条)',
dataKey: 'cost_per_100_replies',
color: '{colors["cost_per_100_replies"]}'
}},
tokensPer100Replies: {{
id: 'tokensPer100RepliesChart',
title: 'Token/回复数量',
yAxisLabel: 'Token (/100条)',
dataKey: 'tokens_per_100_replies',
color: '{colors["tokens_per_100_replies"]}'
}}
}};
function switchMetricsTimeScale(timeScale) {{
// 更新按钮状态
document.querySelectorAll('.time-scale-btn').forEach(btn => {{
btn.classList.remove('active');
}});
event.target.classList.add('active');
// 更新图表数据
const data = allMetricsData[timeScale];
updateAllMetricsCharts(data, timeScale);
}}
function updateAllMetricsCharts(data, timeScale) {{
// 销毁现有图表
Object.values(currentMetricsCharts).forEach(chart => {{
if (chart) chart.destroy();
}});
currentMetricsCharts = {{}};
// 重新创建图表
createMetricsChart('costPer100Messages', data, timeScale);
createMetricsChart('costPerHour', data, timeScale);
createMetricsChart('tokensPer100Messages', data, timeScale);
createMetricsChart('tokensPerHour', data, timeScale);
createMetricsChart('costPer100Replies', data, timeScale);
createMetricsChart('tokensPer100Replies', data, timeScale);
}}
function createMetricsChart(chartType, data, timeScale) {{
const config = metricsConfigs[chartType];
currentMetricsCharts[chartType] = new Chart(document.getElementById(config.id), {{
type: 'line',
data: {{
labels: data.time_labels,
datasets: [{{
label: config.title,
data: data[config.dataKey],
borderColor: config.color,
backgroundColor: config.color + '20',
tension: 0.4,
fill: false
}}]
}},
options: {{
responsive: true,
plugins: {{
title: {{
display: true,
text: timeScale + '' + config.title + '趋势',
font: {{ size: 16 }}
}},
legend: {{
display: false
}}
}},
scales: {{
x: {{
title: {{
display: true,
text: '时间'
}},
ticks: {{
maxTicksLimit: 12
}}
}},
y: {{
title: {{
display: true,
text: config.yAxisLabel
}},
beginAtZero: true
}}
}},
interaction: {{
intersect: false,
mode: 'index'
}}
}}
}});
}}
// 初始化图表默认7天
document.addEventListener('DOMContentLoaded', function() {{
updateAllMetricsCharts(allMetricsData['7d'], '7d');
}});
</script>
</div>
"""
class AsyncStatisticOutputTask(AsyncTask):
"""完全异步的统计输出任务 - 更高性能版本"""
@ -1748,6 +2213,15 @@ class AsyncStatisticOutputTask(AsyncTask):
def _generate_chart_tab(self, chart_data: dict) -> str:
return StatisticOutputTask._generate_chart_tab(self, chart_data) # type: ignore
def _generate_metrics_data(self, now: datetime) -> dict:
return StatisticOutputTask._generate_metrics_data(self, now) # type: ignore
def _collect_metrics_interval_data(self, now: datetime, hours: int, interval_hours: int) -> dict:
return StatisticOutputTask._collect_metrics_interval_data(self, now, hours, interval_hours) # type: ignore
def _generate_metrics_tab(self, metrics_data: dict) -> str:
return StatisticOutputTask._generate_metrics_tab(self, metrics_data) # type: ignore
def _get_chat_display_name_from_id(self, chat_id: str) -> str:
return StatisticOutputTask._get_chat_display_name_from_id(self, chat_id) # type: ignore

View File

@ -5,6 +5,7 @@ from maim_message import MessageServer
from src.common.remote import TelemetryHeartBeatTask
from src.manager.async_task_manager import async_task_manager
from src.chat.utils.statistic import OnlineTimeRecordTask, StatisticOutputTask
# from src.chat.utils.token_statistics import TokenStatisticsTask
from src.chat.emoji_system.emoji_manager import get_emoji_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.config.config import global_config
@ -64,6 +65,9 @@ class MainSystem:
# 添加统计信息输出任务
await async_task_manager.add_task(StatisticOutputTask())
# 添加聊天流统计任务每5分钟生成一次报告统计最近30天的数据
# await async_task_manager.add_task(TokenStatisticsTask())
# 添加遥测心跳任务
await async_task_manager.add_task(TelemetryHeartBeatTask())