From 17e6a215d8a9b91653bb01bde2d61328b3af48c8 Mon Sep 17 00:00:00 2001
From: SengokuCola <1026294844@qq.com>
Date: Tue, 11 Nov 2025 01:19:09 +0800
Subject: [PATCH] =?UTF-8?q?featrue:=E6=B7=BB=E5=8A=A0=E5=A4=A7=E9=87=8F?=
=?UTF-8?q?=E6=96=B0=E7=BB=9F=E8=AE=A1=E6=8C=87=E6=A0=87?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
src/chat/utils/statistic.py | 518 ++++++++++++++++++++++++++++++++++--
src/main.py | 4 +
2 files changed, 500 insertions(+), 22 deletions(-)
diff --git a/src/chat/utils/statistic.py b/src/chat/utils/statistic.py
index a9db1518..8cc2071a 100644
--- a/src/chat/utils/statistic.py
+++ b/src/chat/utils/statistic.py
@@ -1,5 +1,6 @@
import asyncio
import concurrent.futures
+import json
from collections import defaultdict
from datetime import datetime, timedelta
@@ -10,6 +11,7 @@ from src.common.database.database import db
from src.common.database.database_model import OnlineTime, LLMUsage, Messages
from src.manager.async_task_manager import AsyncTask
from src.manager.local_store_manager import local_storage
+from src.config.config import global_config
logger = get_logger("maibot_statistic")
@@ -51,6 +53,7 @@ STD_TIME_COST_BY_MODULE = "std_time_costs_by_module"
ONLINE_TIME = "online_time"
TOTAL_MSG_CNT = "total_messages"
MSG_CNT_BY_CHAT = "messages_by_chat"
+TOTAL_REPLY_CNT = "total_replies"
class OnlineTimeRecordTask(AsyncTask):
@@ -134,6 +137,37 @@ def _format_online_time(online_seconds: int) -> str:
return f"{minutes}分钟{seconds}秒"
+def _format_large_number(num: float | int, html: bool = False) -> str:
+ """
+ 格式化大数字,使用K后缀节省空间(大于9999时)
+ :param num: 要格式化的数字
+ :param html: 是否用于HTML输出(如果是,K会着色)
+ :return: 格式化后的字符串,如 12K, 1.3K, 120K
+ """
+ if num >= 10000:
+ # 大于等于10000,使用K后缀
+ value = num / 1000.0
+ if value >= 10:
+ number_part = str(int(value))
+ k_suffix = "K"
+ else:
+ number_part = f"{value:.1f}"
+ k_suffix = "K"
+
+ if html:
+ # HTML输出:K着色为主题色并加粗大写
+ return f"{number_part}K"
+ else:
+ # 控制台输出:纯文本,K大写
+ return f"{number_part}{k_suffix}"
+ else:
+ # 小于10000,直接显示
+ if isinstance(num, float):
+ return f"{num:.1f}" if num != int(num) else str(int(num))
+ else:
+ return str(num)
+
+
class StatisticOutputTask(AsyncTask):
"""统计输出任务"""
@@ -464,9 +498,13 @@ class StatisticOutputTask(AsyncTask):
period_key: {
TOTAL_MSG_CNT: 0,
MSG_CNT_BY_CHAT: defaultdict(int),
+ TOTAL_REPLY_CNT: 0,
}
for period_key, _ in collect_period
}
+
+ # 获取bot的QQ账号
+ bot_qq_account = str(global_config.bot.qq_account) if hasattr(global_config, 'bot') and hasattr(global_config.bot, 'qq_account') else ""
query_start_timestamp = collect_period[-1][1].timestamp() # Messages.time is a DoubleField (timestamp)
for message in Messages.select().where(Messages.time >= query_start_timestamp): # type: ignore
@@ -505,11 +543,18 @@ class StatisticOutputTask(AsyncTask):
# 重置为正确的格式
self.name_mapping[chat_id] = (chat_name, message_time_ts)
+ # 检查是否是bot发送的消息(回复)
+ is_bot_reply = False
+ if bot_qq_account and message.user_id == bot_qq_account:
+ is_bot_reply = True
+
for idx, (_, period_start_dt) in enumerate(collect_period):
if message_time_ts >= period_start_dt.timestamp():
for period_key, _ in collect_period[idx:]:
stats[period_key][TOTAL_MSG_CNT] += 1
stats[period_key][MSG_CNT_BY_CHAT][chat_id] += 1
+ if is_bot_reply:
+ stats[period_key][TOTAL_REPLY_CNT] += 1
break
return stats
@@ -635,12 +680,42 @@ class StatisticOutputTask(AsyncTask):
"""
格式化总统计数据
"""
+ # 计算总token数(从所有模型的token数中累加)
+ total_tokens = sum(stats[TOTAL_TOK_BY_MODEL].values()) if stats[TOTAL_TOK_BY_MODEL] else 0
+
+ # 计算花费/消息数量指标(每100条)
+ cost_per_100_messages = (stats[TOTAL_COST] / stats[TOTAL_MSG_CNT] * 100) if stats[TOTAL_MSG_CNT] > 0 else 0.0
+
+ # 计算花费/时间指标(花费/小时)
+ online_hours = stats[ONLINE_TIME] / 3600.0 if stats[ONLINE_TIME] > 0 else 0.0
+ cost_per_hour = stats[TOTAL_COST] / online_hours if online_hours > 0 else 0.0
+
+ # 计算token/消息数量指标(每100条)
+ tokens_per_100_messages = (total_tokens / stats[TOTAL_MSG_CNT] * 100) if stats[TOTAL_MSG_CNT] > 0 else 0.0
+
+ # 计算token/时间指标(token/小时)
+ tokens_per_hour = (total_tokens / online_hours) if online_hours > 0 else 0.0
+
+ # 计算花费/回复数量指标(每100条)
+ total_replies = stats.get(TOTAL_REPLY_CNT, 0)
+ cost_per_100_replies = (stats[TOTAL_COST] / total_replies * 100) if total_replies > 0 else 0.0
+
+ # 计算token/回复数量指标(每100条)
+ tokens_per_100_replies = (total_tokens / total_replies * 100) if total_replies > 0 else 0.0
output = [
f"总在线时间: {_format_online_time(stats[ONLINE_TIME])}",
- f"总消息数: {stats[TOTAL_MSG_CNT]}",
- f"总请求数: {stats[TOTAL_REQ_CNT]}",
+ f"总消息数: {_format_large_number(stats[TOTAL_MSG_CNT])}",
+ f"总回复数: {_format_large_number(total_replies)}",
+ f"总请求数: {_format_large_number(stats[TOTAL_REQ_CNT])}",
+ f"总Token数: {_format_large_number(total_tokens)}",
f"总花费: {stats[TOTAL_COST]:.2f}¥",
+ f"花费/消息数量: {cost_per_100_messages:.4f}¥/100条" if stats[TOTAL_MSG_CNT] > 0 else "花费/消息数量: N/A",
+ f"花费/回复数量: {cost_per_100_replies:.4f}¥/100条" if total_replies > 0 else "花费/回复数量: N/A",
+ f"花费/时间: {cost_per_hour:.2f}¥/小时" if online_hours > 0 else "花费/时间: N/A",
+ f"Token/消息数量: {_format_large_number(tokens_per_100_messages)}/100条" if stats[TOTAL_MSG_CNT] > 0 else "Token/消息数量: N/A",
+ f"Token/回复数量: {_format_large_number(tokens_per_100_replies)}/100条" if total_replies > 0 else "Token/回复数量: N/A",
+ f"Token/时间: {_format_large_number(tokens_per_hour)}/小时" if online_hours > 0 else "Token/时间: N/A",
"",
]
@@ -667,8 +742,13 @@ class StatisticOutputTask(AsyncTask):
cost = stats[COST_BY_MODEL][model_name]
avg_time_cost = stats[AVG_TIME_COST_BY_MODEL][model_name]
std_time_cost = stats[STD_TIME_COST_BY_MODEL][model_name]
+ # 格式化大数字
+ formatted_count = _format_large_number(count)
+ formatted_in_tokens = _format_large_number(in_tokens)
+ formatted_out_tokens = _format_large_number(out_tokens)
+ formatted_tokens = _format_large_number(tokens)
output.append(
- data_fmt.format(name, count, in_tokens, out_tokens, tokens, cost, avg_time_cost, std_time_cost)
+ data_fmt.format(name, formatted_count, formatted_in_tokens, formatted_out_tokens, formatted_tokens, cost, avg_time_cost, std_time_cost)
)
output.append("")
@@ -684,10 +764,12 @@ class StatisticOutputTask(AsyncTask):
for chat_id, count in sorted(stats[MSG_CNT_BY_CHAT].items()):
try:
chat_name = self.name_mapping.get(chat_id, ("未知聊天", 0))[0]
- output.append(f"{chat_name[:32]:<32} {count:>10}")
+ formatted_count = _format_large_number(count)
+ output.append(f"{chat_name[:32]:<32} {formatted_count:>10}")
except (IndexError, TypeError) as e:
logger.warning(f"格式化聊天统计时发生错误,chat_id: {chat_id}, 错误: {e}")
- output.append(f"{'未知聊天':<32} {count:>10}")
+ formatted_count = _format_large_number(count)
+ output.append(f"{'未知聊天':<32} {formatted_count:>10}")
output.append("")
return "\n".join(output)
@@ -737,6 +819,7 @@ class StatisticOutputTask(AsyncTask):
for period in self.stat_period
]
tab_list.append('')
+ tab_list.append('')
def _format_stat_data(stat_data: dict[str, Any], div_id: str, start_time: datetime) -> str:
"""
@@ -752,10 +835,10 @@ class StatisticOutputTask(AsyncTask):
[
f"
"
f"| {model_name} | "
- f"{count} | "
- f"{stat_data[IN_TOK_BY_MODEL][model_name]} | "
- f"{stat_data[OUT_TOK_BY_MODEL][model_name]} | "
- f"{stat_data[TOTAL_TOK_BY_MODEL][model_name]} | "
+ f"{_format_large_number(count, html=True)} | "
+ f"{_format_large_number(stat_data[IN_TOK_BY_MODEL][model_name], html=True)} | "
+ f"{_format_large_number(stat_data[OUT_TOK_BY_MODEL][model_name], html=True)} | "
+ f"{_format_large_number(stat_data[TOTAL_TOK_BY_MODEL][model_name], html=True)} | "
f"{stat_data[COST_BY_MODEL][model_name]:.2f} ¥ | "
f"{stat_data[AVG_TIME_COST_BY_MODEL][model_name]:.1f} 秒 | "
f"{stat_data[STD_TIME_COST_BY_MODEL][model_name]:.1f} 秒 | "
@@ -770,10 +853,10 @@ class StatisticOutputTask(AsyncTask):
[
f"
"
f"| {req_type} | "
- f"{count} | "
- f"{stat_data[IN_TOK_BY_TYPE][req_type]} | "
- f"{stat_data[OUT_TOK_BY_TYPE][req_type]} | "
- f"{stat_data[TOTAL_TOK_BY_TYPE][req_type]} | "
+ f"{_format_large_number(count, html=True)} | "
+ f"{_format_large_number(stat_data[IN_TOK_BY_TYPE][req_type], html=True)} | "
+ f"{_format_large_number(stat_data[OUT_TOK_BY_TYPE][req_type], html=True)} | "
+ f"{_format_large_number(stat_data[TOTAL_TOK_BY_TYPE][req_type], html=True)} | "
f"{stat_data[COST_BY_TYPE][req_type]:.2f} ¥ | "
f"{stat_data[AVG_TIME_COST_BY_TYPE][req_type]:.1f} 秒 | "
f"{stat_data[STD_TIME_COST_BY_TYPE][req_type]:.1f} 秒 | "
@@ -788,10 +871,10 @@ class StatisticOutputTask(AsyncTask):
[
f"
"
f"| {module_name} | "
- f"{count} | "
- f"{stat_data[IN_TOK_BY_MODULE][module_name]} | "
- f"{stat_data[OUT_TOK_BY_MODULE][module_name]} | "
- f"{stat_data[TOTAL_TOK_BY_MODULE][module_name]} | "
+ f"{_format_large_number(count, html=True)} | "
+ f"{_format_large_number(stat_data[IN_TOK_BY_MODULE][module_name], html=True)} | "
+ f"{_format_large_number(stat_data[OUT_TOK_BY_MODULE][module_name], html=True)} | "
+ f"{_format_large_number(stat_data[TOTAL_TOK_BY_MODULE][module_name], html=True)} | "
f"{stat_data[COST_BY_MODULE][module_name]:.2f} ¥ | "
f"{stat_data[AVG_TIME_COST_BY_MODULE][module_name]:.1f} 秒 | "
f"{stat_data[STD_TIME_COST_BY_MODULE][module_name]:.1f} 秒 | "
@@ -807,10 +890,10 @@ class StatisticOutputTask(AsyncTask):
for chat_id, count in sorted(stat_data[MSG_CNT_BY_CHAT].items()):
try:
chat_name = self.name_mapping.get(chat_id, ("未知聊天", 0))[0]
- chat_rows.append(f"
| {chat_name} | {count} |
")
+ chat_rows.append(f"| {chat_name} | {_format_large_number(count, html=True)} |
")
except (IndexError, TypeError) as e:
logger.warning(f"生成HTML聊天统计时发生错误,chat_id: {chat_id}, 错误: {e}")
- chat_rows.append(f"| 未知聊天 | {count} |
")
+ chat_rows.append(f"| 未知聊天 | {_format_large_number(count, html=True)} |
")
chat_rows_html = "\n".join(chat_rows) if chat_rows else "| 暂无数据 |
"
# 生成HTML
@@ -827,16 +910,48 @@ class StatisticOutputTask(AsyncTask):
总消息数
-
{stat_data[TOTAL_MSG_CNT]}
+
{_format_large_number(stat_data[TOTAL_MSG_CNT], html=True)}
+
+
+
总回复数
+
{_format_large_number(stat_data.get(TOTAL_REPLY_CNT, 0), html=True)}
总请求数
-
{stat_data[TOTAL_REQ_CNT]}
+
{_format_large_number(stat_data[TOTAL_REQ_CNT], html=True)}
+
+
+
总Token数
+
{_format_large_number(sum(stat_data[TOTAL_TOK_BY_MODEL].values()) if stat_data[TOTAL_TOK_BY_MODEL] else 0, html=True)}
总花费
{stat_data[TOTAL_COST]:.2f} ¥
+
+
花费/消息数量
+
{(stat_data[TOTAL_COST] / stat_data[TOTAL_MSG_CNT] * 100 if stat_data[TOTAL_MSG_CNT] > 0 else 0.0):.4f} ¥/100条
+
+
+
花费/时间
+
{(stat_data[TOTAL_COST] / (stat_data[ONLINE_TIME] / 3600.0) if stat_data[ONLINE_TIME] > 0 else 0.0):.2f} ¥/小时
+
+
+
Token/消息数量
+
{_format_large_number(sum(stat_data[TOTAL_TOK_BY_MODEL].values()) / stat_data[TOTAL_MSG_CNT] * 100 if stat_data[TOTAL_MSG_CNT] > 0 and stat_data[TOTAL_TOK_BY_MODEL] else 0.0, html=True)}/100条
+
+
+
Token/回复数量
+
{_format_large_number(sum(stat_data[TOTAL_TOK_BY_MODEL].values()) / stat_data.get(TOTAL_REPLY_CNT, 0) * 100 if stat_data.get(TOTAL_REPLY_CNT, 0) > 0 and stat_data[TOTAL_TOK_BY_MODEL] else 0.0, html=True)}/100条
+
+
+
Token/时间
+
{_format_large_number(sum(stat_data[TOTAL_TOK_BY_MODEL].values()) / (stat_data[ONLINE_TIME] / 3600.0) if stat_data[ONLINE_TIME] > 0 and stat_data[TOTAL_TOK_BY_MODEL] else 0.0, html=True)}/小时
+
+
+
花费/回复数量
+
{(stat_data[TOTAL_COST] / stat_data.get(TOTAL_REPLY_CNT, 0) * 100 if stat_data.get(TOTAL_REPLY_CNT, 0) > 0 else 0.0):.4f} ¥/100条
+
按模型分类统计
@@ -1089,6 +1204,10 @@ class StatisticOutputTask(AsyncTask):
# 添加图表内容
chart_data = self._generate_chart_data(stat)
tab_content_list.append(self._generate_chart_tab(chart_data))
+
+ # 添加指标趋势图表
+ metrics_data = self._generate_metrics_data(now)
+ tab_content_list.append(self._generate_metrics_tab(metrics_data))
joined_tab_list = "\n".join(tab_list)
joined_tab_content = "\n".join(tab_content_list)
@@ -1161,7 +1280,7 @@ class StatisticOutputTask(AsyncTask):
}
.btn:hover { border-color: #9f8efb; color: #7c6bcf; background-color: #f1ecff; }
/* 新增:KPI 卡片 */
- .kpi-cards { display: grid; grid-template-columns: repeat(4, 1fr); gap: 12px; margin: 12px 0 6px; }
+ .kpi-cards { display: grid; grid-template-columns: repeat(5, 1fr); gap: 12px; margin: 12px 0 6px; }
.kpi-card {
background: linear-gradient(145deg, #ffffff 0%, #f6f2ff 100%);
border: 1px solid #e3dbff;
@@ -1657,6 +1776,352 @@ class StatisticOutputTask(AsyncTask):
"""
+ def _generate_metrics_data(self, now: datetime) -> dict:
+ """生成指标趋势数据"""
+ metrics_data = {}
+
+ # 24小时尺度:1小时为单位
+ metrics_data["24h"] = self._collect_metrics_interval_data(now, hours=24, interval_hours=1)
+
+ # 7天尺度:1天为单位
+ metrics_data["7d"] = self._collect_metrics_interval_data(now, hours=24*7, interval_hours=24)
+
+ # 30天尺度:1天为单位
+ metrics_data["30d"] = self._collect_metrics_interval_data(now, hours=24*30, interval_hours=24)
+
+ return metrics_data
+
+ def _collect_metrics_interval_data(self, now: datetime, hours: int, interval_hours: int) -> dict:
+ """收集指定时间范围内每个间隔的指标数据"""
+ start_time = now - timedelta(hours=hours)
+ time_points = []
+ current_time = start_time
+
+ # 生成时间点
+ while current_time <= now:
+ time_points.append(current_time)
+ current_time += timedelta(hours=interval_hours)
+
+ # 初始化数据结构
+ cost_per_100_messages = [0.0] * len(time_points) # 花费/消息数量(每100条)
+ cost_per_hour = [0.0] * len(time_points) # 花费/时间(每小时)
+ tokens_per_100_messages = [0.0] * len(time_points) # Token/消息数量(每100条)
+ tokens_per_hour = [0.0] * len(time_points) # Token/时间(每小时)
+ cost_per_100_replies = [0.0] * len(time_points) # 花费/回复数量(每100条)
+ tokens_per_100_replies = [0.0] * len(time_points) # Token/回复数量(每100条)
+
+ # 每个时间点的累计数据
+ total_costs = [0.0] * len(time_points)
+ total_tokens = [0] * len(time_points)
+ total_messages = [0] * len(time_points)
+ total_replies = [0] * len(time_points)
+ total_online_hours = [0.0] * len(time_points)
+
+ # 获取bot的QQ账号
+ bot_qq_account = str(global_config.bot.qq_account) if hasattr(global_config, 'bot') and hasattr(global_config.bot, 'qq_account') else ""
+
+ interval_seconds = interval_hours * 3600
+
+ # 查询LLM使用记录
+ query_start_time = start_time
+ for record in LLMUsage.select().where(LLMUsage.timestamp >= query_start_time): # type: ignore
+ record_time = record.timestamp
+
+ # 找到对应的时间间隔索引
+ time_diff = (record_time - start_time).total_seconds()
+ interval_index = int(time_diff // interval_seconds)
+
+ if 0 <= interval_index < len(time_points):
+ cost = record.cost or 0.0
+ prompt_tokens = record.prompt_tokens or 0
+ completion_tokens = record.completion_tokens or 0
+ total_token = prompt_tokens + completion_tokens
+
+ total_costs[interval_index] += cost
+ total_tokens[interval_index] += total_token
+
+ # 查询消息记录
+ query_start_timestamp = start_time.timestamp()
+ for message in Messages.select().where(Messages.time >= query_start_timestamp): # type: ignore
+ message_time_ts = message.time
+
+ time_diff = message_time_ts - query_start_timestamp
+ interval_index = int(time_diff // interval_seconds)
+
+ if 0 <= interval_index < len(time_points):
+ total_messages[interval_index] += 1
+ # 检查是否是bot发送的消息(回复)
+ if bot_qq_account and message.user_id == bot_qq_account:
+ total_replies[interval_index] += 1
+
+ # 查询在线时间记录
+ for record in OnlineTime.select().where(OnlineTime.end_timestamp >= start_time): # type: ignore
+ record_start = record.start_timestamp
+ record_end = record.end_timestamp
+
+ # 找到记录覆盖的所有时间间隔
+ for idx, time_point in enumerate(time_points):
+ interval_start = time_point
+ interval_end = time_point + timedelta(hours=interval_hours)
+
+ # 计算重叠部分
+ overlap_start = max(record_start, interval_start)
+ overlap_end = min(record_end, interval_end)
+
+ if overlap_end > overlap_start:
+ overlap_hours = (overlap_end - overlap_start).total_seconds() / 3600.0
+ total_online_hours[idx] += overlap_hours
+
+ # 计算指标
+ for idx in range(len(time_points)):
+ # 花费/消息数量(每100条)
+ if total_messages[idx] > 0:
+ cost_per_100_messages[idx] = (total_costs[idx] / total_messages[idx] * 100)
+
+ # 花费/时间(每小时)
+ if total_online_hours[idx] > 0:
+ cost_per_hour[idx] = (total_costs[idx] / total_online_hours[idx])
+
+ # Token/消息数量(每100条)
+ if total_messages[idx] > 0:
+ tokens_per_100_messages[idx] = (total_tokens[idx] / total_messages[idx] * 100)
+
+ # Token/时间(每小时)
+ if total_online_hours[idx] > 0:
+ tokens_per_hour[idx] = (total_tokens[idx] / total_online_hours[idx])
+
+ # 花费/回复数量(每100条)
+ if total_replies[idx] > 0:
+ cost_per_100_replies[idx] = (total_costs[idx] / total_replies[idx] * 100)
+
+ # Token/回复数量(每100条)
+ if total_replies[idx] > 0:
+ tokens_per_100_replies[idx] = (total_tokens[idx] / total_replies[idx] * 100)
+
+ # 生成时间标签
+ if interval_hours == 1:
+ time_labels = [t.strftime("%H:%M") for t in time_points]
+ else:
+ time_labels = [t.strftime("%m-%d") for t in time_points]
+
+ return {
+ "time_labels": time_labels,
+ "cost_per_100_messages": cost_per_100_messages,
+ "cost_per_hour": cost_per_hour,
+ "tokens_per_100_messages": tokens_per_100_messages,
+ "tokens_per_hour": tokens_per_hour,
+ "cost_per_100_replies": cost_per_100_replies,
+ "tokens_per_100_replies": tokens_per_100_replies,
+ }
+
+ def _generate_metrics_tab(self, metrics_data: dict) -> str:
+ """生成指标趋势图表选项卡HTML内容"""
+ colors = {
+ "cost_per_100_messages": "#8b5cf6",
+ "cost_per_hour": "#9f8efb",
+ "tokens_per_100_messages": "#b5a6ff",
+ "tokens_per_hour": "#c7bbff",
+ "cost_per_100_replies": "#d9ceff",
+ "tokens_per_100_replies": "#a78bfa",
+ }
+
+ return f"""
+
+
指标趋势图表
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ """
+
class AsyncStatisticOutputTask(AsyncTask):
"""完全异步的统计输出任务 - 更高性能版本"""
@@ -1748,6 +2213,15 @@ class AsyncStatisticOutputTask(AsyncTask):
def _generate_chart_tab(self, chart_data: dict) -> str:
return StatisticOutputTask._generate_chart_tab(self, chart_data) # type: ignore
+ def _generate_metrics_data(self, now: datetime) -> dict:
+ return StatisticOutputTask._generate_metrics_data(self, now) # type: ignore
+
+ def _collect_metrics_interval_data(self, now: datetime, hours: int, interval_hours: int) -> dict:
+ return StatisticOutputTask._collect_metrics_interval_data(self, now, hours, interval_hours) # type: ignore
+
+ def _generate_metrics_tab(self, metrics_data: dict) -> str:
+ return StatisticOutputTask._generate_metrics_tab(self, metrics_data) # type: ignore
+
def _get_chat_display_name_from_id(self, chat_id: str) -> str:
return StatisticOutputTask._get_chat_display_name_from_id(self, chat_id) # type: ignore
diff --git a/src/main.py b/src/main.py
index 7bbcdb91..98c36147 100644
--- a/src/main.py
+++ b/src/main.py
@@ -5,6 +5,7 @@ from maim_message import MessageServer
from src.common.remote import TelemetryHeartBeatTask
from src.manager.async_task_manager import async_task_manager
from src.chat.utils.statistic import OnlineTimeRecordTask, StatisticOutputTask
+# from src.chat.utils.token_statistics import TokenStatisticsTask
from src.chat.emoji_system.emoji_manager import get_emoji_manager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.config.config import global_config
@@ -64,6 +65,9 @@ class MainSystem:
# 添加统计信息输出任务
await async_task_manager.add_task(StatisticOutputTask())
+ # 添加聊天流统计任务(每5分钟生成一次报告,统计最近30天的数据)
+ # await async_task_manager.add_task(TokenStatisticsTask())
+
# 添加遥测心跳任务
await async_task_manager.add_task(TelemetryHeartBeatTask())