better:优化记忆检索占用

pull/1356/head
SengokuCola 2025-11-11 00:40:43 +08:00
parent 85864c7013
commit 26784b00a5
5 changed files with 23 additions and 459 deletions

View File

@ -390,6 +390,7 @@ class ChatHistorySummarizer:
"theme": theme,
"keywords": json.dumps(keywords, ensure_ascii=False),
"summary": summary,
"count": 0,
}
# 使用db_save存储使用start_time和chat_id作为唯一标识

View File

@ -377,6 +377,7 @@ class ChatHistory(BaseModel):
theme = TextField() # 主题:这段对话的主要内容,一个简短的标题
keywords = TextField() # 关键词这段对话的关键词JSON格式存储
summary = TextField() # 概括:对这段话的平文本概括
count = IntegerField(default=0) # 被检索次数
class Meta:
table_name = "chat_history"

View File

@ -280,12 +280,12 @@ async def _react_agent_solve_question(
return False, "未找到相关信息", thinking_steps
def _get_recent_query_history(chat_id: str, time_window_seconds: float = 3600.0) -> str:
def _get_recent_query_history(chat_id: str, time_window_seconds: float = 300.0) -> str:
"""获取最近一段时间内的查询历史
Args:
chat_id: 聊天ID
time_window_seconds: 时间窗口默认1小时
time_window_seconds: 时间窗口默认10分钟
Returns:
str: 格式化的查询历史字符串
@ -302,7 +302,7 @@ def _get_recent_query_history(chat_id: str, time_window_seconds: float = 3600.0)
(ThinkingBack.update_time >= start_time)
)
.order_by(ThinkingBack.update_time.desc())
.limit(8) # 最多返回10条最近的记录
.limit(5) # 最多返回5条最近的记录
)
if not records.exists():
@ -314,7 +314,8 @@ def _get_recent_query_history(chat_id: str, time_window_seconds: float = 3600.0)
for record in records:
status = "✓ 已找到答案" if record.found_answer else "✗ 未找到答案"
answer_preview = ""
if record.answer:
# 只有找到答案时才显示答案内容
if record.found_answer and record.answer:
# 截取答案前100字符
answer_preview = record.answer[:100]
if len(record.answer) > 100:
@ -554,7 +555,7 @@ async def build_memory_retrieval_prompt(
chat_id = chat_stream.stream_id
# 获取最近查询历史最近1小时内的查询
recent_query_history = _get_recent_query_history(chat_id, time_window_seconds=600.0)
recent_query_history = _get_recent_query_history(chat_id, time_window_seconds=300.0)
if not recent_query_history:
recent_query_history = "最近没有查询记录。"

View File

@ -6,9 +6,7 @@
import json
from typing import Optional
from src.common.logger import get_logger
from src.config.config import model_config
from src.common.database.database_model import ChatHistory
from src.llm_models.utils_model import LLMRequest
from src.chat.utils.utils import parse_keywords_string
from .tool_registry import register_memory_retrieval_tool
from .tool_utils import parse_datetime_to_timestamp, parse_time_range
@ -116,10 +114,19 @@ async def query_chat_history(
return f"未找到包含关键词'{keywords_str}'的聊天记录概述"
records = filtered_records
# 对即将返回的记录增加使用计数
records_to_use = records[:3]
for record in records_to_use:
try:
ChatHistory.update(count=ChatHistory.count + 1).where(ChatHistory.id == record.id).execute()
record.count = (record.count or 0) + 1
except Exception as update_error:
logger.error(f"更新聊天记录概述计数失败: {update_error}")
# 构建结果文本
results = []
for record in records[:10]: # 最多返回10条记录
for record in records_to_use: # 最多返回3条记录
result_parts = []
# 添加主题
@ -146,66 +153,11 @@ async def query_chat_history(
if not results:
return "未找到相关聊天记录概述"
# 如果只有一条记录,直接返回
if len(results) == 1:
return results[0]
# 多条记录使用LLM总结
try:
llm_request = LLMRequest(
model_set=model_config.model_task_config.utils_small,
request_type="chat_history_analysis"
)
query_desc = []
if keyword:
# 解析关键词列表用于显示
keywords_list = parse_keywords_string(keyword)
if keywords_list:
keywords_str = "".join(keywords_list)
query_desc.append(f"关键词:{keywords_str}")
else:
query_desc.append(f"关键词:{keyword}")
if time_range:
if " - " in time_range:
query_desc.append(f"时间范围:{time_range}")
else:
query_desc.append(f"时间点:{time_range}")
query_info = "".join(query_desc) if query_desc else "聊天记录概述"
combined_results = "\n\n---\n\n".join(results)
analysis_prompt = f"""请根据以下聊天记录概述,总结与查询条件相关的信息。请输出一段平文本,不要有特殊格式。
查询条件{query_info}
聊天记录概述
{combined_results}
请仔细分析聊天记录概述提取与查询条件相关的信息并给出总结如果概述中没有相关信息输出"无有效信息"即可不要输出其他内容
总结"""
response, (reasoning, model_name, tool_calls) = await llm_request.generate_response_async(
prompt=analysis_prompt,
temperature=0.3,
max_tokens=512
)
logger.info(f"查询聊天历史概述提示词: {analysis_prompt}")
logger.info(f"查询聊天历史概述响应: {response}")
logger.info(f"查询聊天历史概述推理: {reasoning}")
logger.info(f"查询聊天历史概述模型: {model_name}")
if "无有效信息" in response:
return "无有效信息"
return response
except Exception as llm_error:
logger.error(f"LLM分析聊天记录概述失败: {llm_error}")
# 如果LLM分析失败返回前3条记录的摘要
return "\n\n---\n\n".join(results[:3])
response_text = "\n\n---\n\n".join(results)
if len(records) > len(records_to_use):
omitted_count = len(records) - len(records_to_use)
response_text += f"\n\n(还有{omitted_count}条历史记录已省略)"
return response_text
except Exception as e:
logger.error(f"查询聊天历史概述失败: {e}")

View File

@ -1,391 +0,0 @@
"""
StyleLearner 数据库测试脚本
使用数据库中的expression数据测试style_learner功能
"""
import os
import sys
from typing import List, Dict, Tuple
from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_recall_fscore_support
# 添加项目根目录到Python路径
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from src.common.database.database_model import Expression, db
from src.express.style_learner import StyleLearnerManager
from src.common.logger import get_logger
logger = get_logger("style_learner_test")
class StyleLearnerDatabaseTest:
"""使用数据库数据测试StyleLearner"""
def __init__(self, random_state: int = 42):
self.random_state = random_state
self.manager = StyleLearnerManager(model_save_path="data/test_style_models")
# 测试结果
self.test_results = {
"total_samples": 0,
"train_samples": 0,
"test_samples": 0,
"unique_styles": 0,
"unique_chat_ids": 0,
"accuracy": 0.0,
"precision": 0.0,
"recall": 0.0,
"f1_score": 0.0,
"predictions": [],
"ground_truth": [],
"model_save_success": False,
"model_save_path": self.manager.model_save_path
}
def load_data_from_database(self) -> List[Dict]:
"""
从数据库加载expression数据
Returns:
List[Dict]: 包含up_content, style, chat_id的数据列表
"""
try:
# 连接数据库
db.connect(reuse_if_open=True)
# 查询所有expression数据
expressions = Expression.select().where(
(Expression.up_content.is_null(False)) &
(Expression.style.is_null(False)) &
(Expression.chat_id.is_null(False)) &
(Expression.type == "style")
)
data = []
for expr in expressions:
if expr.up_content and expr.style and expr.chat_id:
data.append({
"up_content": expr.up_content,
"style": expr.style,
"chat_id": expr.chat_id,
"last_active_time": expr.last_active_time,
"context": expr.context,
"situation": expr.situation
})
logger.info(f"从数据库加载了 {len(data)} 条expression数据")
return data
except Exception as e:
logger.error(f"从数据库加载数据失败: {e}")
return []
def preprocess_data(self, data: List[Dict]) -> List[Dict]:
"""
数据预处理
Args:
data: 原始数据
Returns:
List[Dict]: 预处理后的数据
"""
# 过滤掉空值或过短的数据
filtered_data = []
for item in data:
up_content = item["up_content"].strip()
style = item["style"].strip()
if len(up_content) >= 2 and len(style) >= 2:
filtered_data.append({
"up_content": up_content,
"style": style,
"chat_id": item["chat_id"],
"last_active_time": item["last_active_time"],
"context": item["context"],
"situation": item["situation"]
})
logger.info(f"预处理后剩余 {len(filtered_data)} 条数据")
return filtered_data
def split_data(self, data: List[Dict]) -> Tuple[List[Dict], List[Dict]]:
"""
分割训练集和测试集
训练集使用所有数据测试集从训练集中随机选择5%
Args:
data: 预处理后的数据
Returns:
Tuple[List[Dict], List[Dict]]: (训练集, 测试集)
"""
# 训练集使用所有数据
train_data = data.copy()
# 测试集从训练集中随机选择5%
test_size = 0.05 # 5%
test_data = train_test_split(
train_data, test_size=test_size, random_state=self.random_state
)[1] # 只取测试集部分
logger.info(f"数据分割完成: 训练集 {len(train_data)} 条, 测试集 {len(test_data)}")
logger.info(f"训练集使用所有数据,测试集从训练集中随机选择 {test_size*100:.1f}%")
return train_data, test_data
def train_model(self, train_data: List[Dict]) -> None:
"""
训练模型
Args:
train_data: 训练数据
"""
logger.info("开始训练模型...")
# 统计信息
chat_ids = set()
styles = set()
for item in train_data:
chat_id = item["chat_id"]
up_content = item["up_content"]
style = item["style"]
chat_ids.add(chat_id)
styles.add(style)
# 学习映射关系
success = self.manager.learn_mapping(chat_id, up_content, style)
if not success:
logger.warning(f"学习失败: {chat_id} - {up_content} -> {style}")
self.test_results["train_samples"] = len(train_data)
self.test_results["unique_styles"] = len(styles)
self.test_results["unique_chat_ids"] = len(chat_ids)
logger.info(f"训练完成: {len(train_data)} 个样本, {len(styles)} 种风格, {len(chat_ids)} 个聊天室")
# 保存训练好的模型
logger.info("开始保存训练好的模型...")
save_success = self.manager.save_all_models()
self.test_results["model_save_success"] = save_success
if save_success:
logger.info(f"所有模型已成功保存到: {self.manager.model_save_path}")
print(f"✅ 模型已保存到: {self.manager.model_save_path}")
else:
logger.warning("部分模型保存失败")
print(f"⚠️ 模型保存失败,请检查路径: {self.manager.model_save_path}")
def test_model(self, test_data: List[Dict]) -> None:
"""
测试模型
Args:
test_data: 测试数据
"""
logger.info("开始测试模型...")
predictions = []
ground_truth = []
correct_predictions = 0
for item in test_data:
chat_id = item["chat_id"]
up_content = item["up_content"]
true_style = item["style"]
# 预测风格
predicted_style, scores = self.manager.predict_style(chat_id, up_content, top_k=1)
predictions.append(predicted_style)
ground_truth.append(true_style)
# 检查预测是否正确
if predicted_style == true_style:
correct_predictions += 1
# 记录详细预测结果
self.test_results["predictions"].append({
"chat_id": chat_id,
"up_content": up_content,
"true_style": true_style,
"predicted_style": predicted_style,
"scores": scores
})
# 计算准确率
accuracy = correct_predictions / len(test_data) if test_data else 0
# 计算其他指标需要处理None值
valid_predictions = [p for p in predictions if p is not None]
valid_ground_truth = [gt for p, gt in zip(predictions, ground_truth, strict=False) if p is not None]
if valid_predictions:
precision, recall, f1, _ = precision_recall_fscore_support(
valid_ground_truth, valid_predictions, average='weighted', zero_division=0
)
else:
precision = recall = f1 = 0.0
self.test_results["test_samples"] = len(test_data)
self.test_results["accuracy"] = accuracy
self.test_results["precision"] = precision
self.test_results["recall"] = recall
self.test_results["f1_score"] = f1
logger.info(f"测试完成: 准确率 {accuracy:.4f}, 精确率 {precision:.4f}, 召回率 {recall:.4f}, F1分数 {f1:.4f}")
def analyze_results(self) -> None:
"""分析测试结果"""
logger.info("=== 测试结果分析 ===")
print("\n📊 数据统计:")
print(f" 总样本数: {self.test_results['total_samples']}")
print(f" 训练样本数: {self.test_results['train_samples']}")
print(f" 测试样本数: {self.test_results['test_samples']}")
print(f" 唯一风格数: {self.test_results['unique_styles']}")
print(f" 唯一聊天室数: {self.test_results['unique_chat_ids']}")
print("\n🎯 模型性能:")
print(f" 准确率: {self.test_results['accuracy']:.4f}")
print(f" 精确率: {self.test_results['precision']:.4f}")
print(f" 召回率: {self.test_results['recall']:.4f}")
print(f" F1分数: {self.test_results['f1_score']:.4f}")
print("\n💾 模型保存:")
save_status = "成功" if self.test_results['model_save_success'] else "失败"
print(f" 保存状态: {save_status}")
print(f" 保存路径: {self.test_results['model_save_path']}")
# 分析各聊天室的性能
chat_performance = {}
for pred in self.test_results["predictions"]:
chat_id = pred["chat_id"]
if chat_id not in chat_performance:
chat_performance[chat_id] = {"correct": 0, "total": 0}
chat_performance[chat_id]["total"] += 1
if pred["predicted_style"] == pred["true_style"]:
chat_performance[chat_id]["correct"] += 1
print("\n📈 各聊天室性能:")
for chat_id, perf in chat_performance.items():
accuracy = perf["correct"] / perf["total"] if perf["total"] > 0 else 0
print(f" {chat_id}: {accuracy:.4f} ({perf['correct']}/{perf['total']})")
# 分析风格分布
style_counts = {}
for pred in self.test_results["predictions"]:
style = pred["true_style"]
style_counts[style] = style_counts.get(style, 0) + 1
print("\n🎨 风格分布 (前10个):")
sorted_styles = sorted(style_counts.items(), key=lambda x: x[1], reverse=True)
for style, count in sorted_styles[:10]:
print(f" {style}: {count}")
def show_sample_predictions(self, num_samples: int = 10) -> None:
"""显示样本预测结果"""
print(f"\n🔍 样本预测结果 (前{num_samples}个):")
for i, pred in enumerate(self.test_results["predictions"][:num_samples]):
status = "" if pred["predicted_style"] == pred["true_style"] else ""
print(f"\n {i+1}. {status}")
print(f" 聊天室: {pred['chat_id']}")
print(f" 输入内容: {pred['up_content']}")
print(f" 真实风格: {pred['true_style']}")
print(f" 预测风格: {pred['predicted_style']}")
if pred["scores"]:
top_scores = dict(list(pred["scores"].items())[:3])
print(f" 分数: {top_scores}")
def save_results(self, output_file: str = "style_learner_test_results.txt") -> None:
"""保存测试结果到文件"""
try:
with open(output_file, "w", encoding="utf-8") as f:
f.write("StyleLearner 数据库测试结果\n")
f.write("=" * 50 + "\n\n")
f.write("数据统计:\n")
f.write(f" 总样本数: {self.test_results['total_samples']}\n")
f.write(f" 训练样本数: {self.test_results['train_samples']}\n")
f.write(f" 测试样本数: {self.test_results['test_samples']}\n")
f.write(f" 唯一风格数: {self.test_results['unique_styles']}\n")
f.write(f" 唯一聊天室数: {self.test_results['unique_chat_ids']}\n\n")
f.write("模型性能:\n")
f.write(f" 准确率: {self.test_results['accuracy']:.4f}\n")
f.write(f" 精确率: {self.test_results['precision']:.4f}\n")
f.write(f" 召回率: {self.test_results['recall']:.4f}\n")
f.write(f" F1分数: {self.test_results['f1_score']:.4f}\n\n")
f.write("模型保存:\n")
save_status = "成功" if self.test_results['model_save_success'] else "失败"
f.write(f" 保存状态: {save_status}\n")
f.write(f" 保存路径: {self.test_results['model_save_path']}\n\n")
f.write("详细预测结果:\n")
for i, pred in enumerate(self.test_results["predictions"]):
status = "" if pred["predicted_style"] == pred["true_style"] else ""
f.write(f"{i+1}. {status} [{pred['chat_id']}] {pred['up_content']} -> {pred['predicted_style']} (真实: {pred['true_style']})\n")
logger.info(f"测试结果已保存到 {output_file}")
except Exception as e:
logger.error(f"保存测试结果失败: {e}")
def run_test(self) -> None:
"""运行完整测试"""
logger.info("开始StyleLearner数据库测试...")
# 1. 加载数据
raw_data = self.load_data_from_database()
if not raw_data:
logger.error("没有加载到数据,测试终止")
return
# 2. 数据预处理
processed_data = self.preprocess_data(raw_data)
if not processed_data:
logger.error("预处理后没有数据,测试终止")
return
self.test_results["total_samples"] = len(processed_data)
# 3. 分割数据
train_data, test_data = self.split_data(processed_data)
# 4. 训练模型
self.train_model(train_data)
# 5. 测试模型
self.test_model(test_data)
# 6. 分析结果
self.analyze_results()
# 7. 显示样本预测
self.show_sample_predictions(10)
# 8. 保存结果
self.save_results()
logger.info("StyleLearner数据库测试完成!")
def main():
"""主函数"""
print("StyleLearner 数据库测试脚本")
print("=" * 50)
# 创建测试实例
test = StyleLearnerDatabaseTest(random_state=42)
# 运行测试
test.run_test()
if __name__ == "__main__":
main()