mirror of https://github.com/Mai-with-u/MaiBot.git
344 lines
12 KiB
Python
344 lines
12 KiB
Python
import re
|
||
import time
|
||
from typing import List, Dict, Optional, Any
|
||
|
||
from src.common.logger import get_logger
|
||
from src.common.database.database_model import Jargon
|
||
from src.llm_models.utils_model import LLMRequest
|
||
from src.config.config import model_config, global_config
|
||
from src.prompt.prompt_manager import prompt_manager
|
||
from src.bw_learner.jargon_miner import search_jargon
|
||
from src.bw_learner.learner_utils import (
|
||
is_bot_message,
|
||
contains_bot_self_name,
|
||
parse_chat_id_list,
|
||
chat_id_list_contains,
|
||
)
|
||
|
||
logger = get_logger("jargon")
|
||
|
||
class JargonExplainer:
|
||
"""黑话解释器,用于在回复前识别和解释上下文中的黑话"""
|
||
|
||
def __init__(self, chat_id: str) -> None:
|
||
self.chat_id = chat_id
|
||
self.llm = LLMRequest(
|
||
model_set=model_config.model_task_config.tool_use,
|
||
request_type="jargon.explain",
|
||
)
|
||
|
||
def match_jargon_from_messages(self, messages: List[Any]) -> List[Dict[str, str]]:
|
||
"""
|
||
通过直接匹配数据库中的jargon字符串来提取黑话
|
||
|
||
Args:
|
||
messages: 消息列表
|
||
|
||
Returns:
|
||
List[Dict[str, str]]: 提取到的黑话列表,每个元素包含content
|
||
"""
|
||
start_time = time.time()
|
||
|
||
if not messages:
|
||
return []
|
||
|
||
# 收集所有消息的文本内容
|
||
message_texts: List[str] = []
|
||
for msg in messages:
|
||
# 跳过机器人自己的消息
|
||
if is_bot_message(msg):
|
||
continue
|
||
|
||
msg_text = (
|
||
getattr(msg, "display_message", None) or getattr(msg, "processed_plain_text", None) or ""
|
||
).strip()
|
||
if msg_text:
|
||
message_texts.append(msg_text)
|
||
|
||
if not message_texts:
|
||
return []
|
||
|
||
# 合并所有消息文本
|
||
combined_text = " ".join(message_texts)
|
||
|
||
# 查询所有有meaning的jargon记录
|
||
query = Jargon.select().where((Jargon.meaning.is_null(False)) & (Jargon.meaning != ""))
|
||
|
||
# 根据all_global配置决定查询逻辑
|
||
if global_config.expression.all_global_jargon:
|
||
# 开启all_global:只查询is_global=True的记录
|
||
query = query.where(Jargon.is_global)
|
||
else:
|
||
# 关闭all_global:查询is_global=True或chat_id列表包含当前chat_id的记录
|
||
# 这里先查询所有,然后在Python层面过滤
|
||
pass
|
||
|
||
# 按count降序排序,优先匹配出现频率高的
|
||
query = query.order_by(Jargon.count.desc())
|
||
|
||
# 执行查询并匹配
|
||
matched_jargon: Dict[str, Dict[str, str]] = {}
|
||
query_time = time.time()
|
||
|
||
for jargon in query:
|
||
content = jargon.content or ""
|
||
if not content or not content.strip():
|
||
continue
|
||
|
||
# 跳过包含机器人昵称的词条
|
||
if contains_bot_self_name(content):
|
||
continue
|
||
|
||
# 检查chat_id(如果all_global=False)
|
||
if not global_config.expression.all_global_jargon:
|
||
if jargon.is_global:
|
||
# 全局黑话,包含
|
||
pass
|
||
else:
|
||
# 检查chat_id列表是否包含当前chat_id
|
||
chat_id_list = parse_chat_id_list(jargon.chat_id)
|
||
if not chat_id_list_contains(chat_id_list, self.chat_id):
|
||
continue
|
||
|
||
# 在文本中查找匹配(大小写不敏感)
|
||
pattern = re.escape(content)
|
||
# 使用单词边界或中文字符边界来匹配,避免部分匹配
|
||
# 对于中文,使用Unicode字符类;对于英文,使用单词边界
|
||
if re.search(r"[\u4e00-\u9fff]", content):
|
||
# 包含中文,使用更宽松的匹配
|
||
search_pattern = pattern
|
||
else:
|
||
# 纯英文/数字,使用单词边界
|
||
search_pattern = r"\b" + pattern + r"\b"
|
||
|
||
if re.search(search_pattern, combined_text, re.IGNORECASE):
|
||
# 找到匹配,记录(去重)
|
||
if content not in matched_jargon:
|
||
matched_jargon[content] = {"content": content}
|
||
|
||
match_time = time.time()
|
||
total_time = match_time - start_time
|
||
query_duration = query_time - start_time
|
||
match_duration = match_time - query_time
|
||
|
||
logger.debug(
|
||
f"黑话匹配完成: 查询耗时 {query_duration:.3f}s, 匹配耗时 {match_duration:.3f}s, "
|
||
f"总耗时 {total_time:.3f}s, 匹配到 {len(matched_jargon)} 个黑话"
|
||
)
|
||
|
||
return list(matched_jargon.values())
|
||
|
||
async def explain_jargon(self, messages: List[Any], chat_context: str) -> Optional[str]:
|
||
"""
|
||
解释上下文中的黑话
|
||
|
||
Args:
|
||
messages: 消息列表
|
||
chat_context: 聊天上下文的文本表示
|
||
|
||
Returns:
|
||
Optional[str]: 黑话解释的概括文本,如果没有黑话则返回None
|
||
"""
|
||
if not messages:
|
||
return None
|
||
|
||
# 直接匹配方式:从数据库中查询jargon并在消息中匹配
|
||
jargon_entries = self.match_jargon_from_messages(messages)
|
||
|
||
if not jargon_entries:
|
||
return None
|
||
|
||
# 去重(按content)
|
||
unique_jargon: Dict[str, Dict[str, str]] = {}
|
||
for entry in jargon_entries:
|
||
content = entry["content"]
|
||
if content not in unique_jargon:
|
||
unique_jargon[content] = entry
|
||
|
||
jargon_list = list(unique_jargon.values())
|
||
logger.info(f"从上下文中提取到 {len(jargon_list)} 个黑话: {[j['content'] for j in jargon_list]}")
|
||
|
||
# 查询每个黑话的含义
|
||
jargon_explanations: List[str] = []
|
||
for entry in jargon_list:
|
||
content = entry["content"]
|
||
|
||
# 根据是否开启全局黑话,决定查询方式
|
||
if global_config.expression.all_global_jargon:
|
||
# 开启全局黑话:查询所有is_global=True的记录
|
||
results = search_jargon(
|
||
keyword=content,
|
||
chat_id=None, # 不指定chat_id,查询全局黑话
|
||
limit=1,
|
||
case_sensitive=False,
|
||
fuzzy=False, # 精确匹配
|
||
)
|
||
else:
|
||
# 关闭全局黑话:优先查询当前聊天或全局的黑话
|
||
results = search_jargon(
|
||
keyword=content,
|
||
chat_id=self.chat_id,
|
||
limit=1,
|
||
case_sensitive=False,
|
||
fuzzy=False, # 精确匹配
|
||
)
|
||
|
||
if results and len(results) > 0:
|
||
meaning = results[0].get("meaning", "").strip()
|
||
if meaning:
|
||
jargon_explanations.append(f"- {content}: {meaning}")
|
||
else:
|
||
logger.info(f"黑话 {content} 没有找到含义")
|
||
else:
|
||
logger.info(f"黑话 {content} 未在数据库中找到")
|
||
|
||
if not jargon_explanations:
|
||
logger.info("没有找到任何黑话的含义,跳过解释")
|
||
return None
|
||
|
||
# 拼接所有黑话解释
|
||
explanations_text = "\n".join(jargon_explanations)
|
||
|
||
# 使用LLM概括黑话解释
|
||
prompt_of_summarize = prompt_manager.get_prompt("jargon_explainer_summarize_prompt")
|
||
prompt_of_summarize.add_context("chat_context", lambda _: chat_context)
|
||
prompt_of_summarize.add_context("jargon_explanations", lambda _: explanations_text)
|
||
summarize_prompt = await prompt_manager.render_prompt(prompt_of_summarize)
|
||
|
||
summary, _ = await self.llm.generate_response_async(summarize_prompt, temperature=0.3)
|
||
if not summary:
|
||
# 如果LLM概括失败,直接返回原始解释
|
||
return f"上下文中的黑话解释:\n{explanations_text}"
|
||
|
||
summary = summary.strip()
|
||
if not summary:
|
||
return f"上下文中的黑话解释:\n{explanations_text}"
|
||
|
||
return summary
|
||
|
||
|
||
async def explain_jargon_in_context(chat_id: str, messages: List[Any], chat_context: str) -> Optional[str]:
|
||
"""
|
||
解释上下文中的黑话(便捷函数)
|
||
|
||
Args:
|
||
chat_id: 聊天ID
|
||
messages: 消息列表
|
||
chat_context: 聊天上下文的文本表示
|
||
|
||
Returns:
|
||
Optional[str]: 黑话解释的概括文本,如果没有黑话则返回None
|
||
"""
|
||
explainer = JargonExplainer(chat_id)
|
||
return await explainer.explain_jargon(messages, chat_context)
|
||
|
||
|
||
def match_jargon_from_text(chat_text: str, chat_id: str) -> List[str]:
|
||
"""直接在聊天文本中匹配已知的jargon,返回出现过的黑话列表
|
||
|
||
Args:
|
||
chat_text: 要匹配的聊天文本
|
||
chat_id: 聊天ID
|
||
|
||
Returns:
|
||
List[str]: 匹配到的黑话列表
|
||
"""
|
||
if not chat_text or not chat_text.strip():
|
||
return []
|
||
|
||
query = Jargon.select().where((Jargon.meaning.is_null(False)) & (Jargon.meaning != ""))
|
||
if global_config.expression.all_global_jargon:
|
||
query = query.where(Jargon.is_global)
|
||
|
||
query = query.order_by(Jargon.count.desc())
|
||
|
||
matched: Dict[str, None] = {}
|
||
|
||
for jargon in query:
|
||
content = (jargon.content or "").strip()
|
||
if not content:
|
||
continue
|
||
|
||
if not global_config.expression.all_global_jargon and not jargon.is_global:
|
||
chat_id_list = parse_chat_id_list(jargon.chat_id)
|
||
if not chat_id_list_contains(chat_id_list, chat_id):
|
||
continue
|
||
|
||
pattern = re.escape(content)
|
||
if re.search(r"[\u4e00-\u9fff]", content):
|
||
search_pattern = pattern
|
||
else:
|
||
search_pattern = r"\b" + pattern + r"\b"
|
||
|
||
if re.search(search_pattern, chat_text, re.IGNORECASE):
|
||
matched[content] = None
|
||
|
||
logger.info(f"匹配到 {len(matched)} 个黑话")
|
||
|
||
return list(matched.keys())
|
||
|
||
|
||
async def retrieve_concepts_with_jargon(concepts: List[str], chat_id: str) -> str:
|
||
"""对概念列表进行jargon检索
|
||
|
||
Args:
|
||
concepts: 概念列表
|
||
chat_id: 聊天ID
|
||
|
||
Returns:
|
||
str: 检索结果字符串
|
||
"""
|
||
if not concepts:
|
||
return ""
|
||
|
||
results = []
|
||
exact_matches = [] # 收集所有精确匹配的概念
|
||
for concept in concepts:
|
||
concept = concept.strip()
|
||
if not concept:
|
||
continue
|
||
|
||
# 先尝试精确匹配
|
||
jargon_results = search_jargon(keyword=concept, chat_id=chat_id, limit=10, case_sensitive=False, fuzzy=False)
|
||
|
||
is_fuzzy_match = False
|
||
|
||
# 如果精确匹配未找到,尝试模糊搜索
|
||
if not jargon_results:
|
||
jargon_results = search_jargon(keyword=concept, chat_id=chat_id, limit=10, case_sensitive=False, fuzzy=True)
|
||
is_fuzzy_match = True
|
||
|
||
if jargon_results:
|
||
# 找到结果
|
||
if is_fuzzy_match:
|
||
# 模糊匹配
|
||
output_parts = [f"未精确匹配到'{concept}'"]
|
||
for result in jargon_results:
|
||
found_content = result.get("content", "").strip()
|
||
meaning = result.get("meaning", "").strip()
|
||
if found_content and meaning:
|
||
output_parts.append(f"找到 '{found_content}' 的含义为:{meaning}")
|
||
results.append("\n".join(output_parts)) # 换行分隔每个jargon解释
|
||
logger.info(f"在jargon库中找到匹配(模糊搜索): {concept},找到{len(jargon_results)}条结果")
|
||
else:
|
||
# 精确匹配
|
||
output_parts = []
|
||
for result in jargon_results:
|
||
meaning = result.get("meaning", "").strip()
|
||
if meaning:
|
||
output_parts.append(f"'{concept}' 为黑话或者网络简写,含义为:{meaning}")
|
||
# 换行分隔每个jargon解释
|
||
results.append("\n".join(output_parts) if len(output_parts) > 1 else output_parts[0])
|
||
exact_matches.append(concept) # 收集精确匹配的概念,稍后统一打印
|
||
else:
|
||
# 未找到,不返回占位信息,只记录日志
|
||
logger.info(f"在jargon库中未找到匹配: {concept}")
|
||
|
||
# 合并所有精确匹配的日志
|
||
if exact_matches:
|
||
logger.info(f"找到黑话: {', '.join(exact_matches)},共找到{len(exact_matches)}条结果")
|
||
|
||
if results:
|
||
return "你了解以下词语可能的含义:\n" + "\n".join(results) + "\n"
|
||
return ""
|