import re import time from typing import List, Dict, Optional, Any from src.common.logger import get_logger from src.common.database.database_model import Jargon from src.llm_models.utils_model import LLMRequest from src.config.config import model_config, global_config from src.prompt.prompt_manager import prompt_manager from src.bw_learner.jargon_miner import search_jargon from src.bw_learner.learner_utils import ( is_bot_message, contains_bot_self_name, parse_chat_id_list, chat_id_list_contains, ) logger = get_logger("jargon") class JargonExplainer: """黑话解释器,用于在回复前识别和解释上下文中的黑话""" def __init__(self, chat_id: str) -> None: self.chat_id = chat_id self.llm = LLMRequest( model_set=model_config.model_task_config.tool_use, request_type="jargon.explain", ) def match_jargon_from_messages(self, messages: List[Any]) -> List[Dict[str, str]]: """ 通过直接匹配数据库中的jargon字符串来提取黑话 Args: messages: 消息列表 Returns: List[Dict[str, str]]: 提取到的黑话列表,每个元素包含content """ start_time = time.time() if not messages: return [] # 收集所有消息的文本内容 message_texts: List[str] = [] for msg in messages: # 跳过机器人自己的消息 if is_bot_message(msg): continue msg_text = ( getattr(msg, "display_message", None) or getattr(msg, "processed_plain_text", None) or "" ).strip() if msg_text: message_texts.append(msg_text) if not message_texts: return [] # 合并所有消息文本 combined_text = " ".join(message_texts) # 查询所有有meaning的jargon记录 query = Jargon.select().where((Jargon.meaning.is_null(False)) & (Jargon.meaning != "")) # 根据all_global配置决定查询逻辑 if global_config.expression.all_global_jargon: # 开启all_global:只查询is_global=True的记录 query = query.where(Jargon.is_global) else: # 关闭all_global:查询is_global=True或chat_id列表包含当前chat_id的记录 # 这里先查询所有,然后在Python层面过滤 pass # 按count降序排序,优先匹配出现频率高的 query = query.order_by(Jargon.count.desc()) # 执行查询并匹配 matched_jargon: Dict[str, Dict[str, str]] = {} query_time = time.time() for jargon in query: content = jargon.content or "" if not content or not content.strip(): continue # 跳过包含机器人昵称的词条 if contains_bot_self_name(content): continue # 检查chat_id(如果all_global=False) if not global_config.expression.all_global_jargon: if jargon.is_global: # 全局黑话,包含 pass else: # 检查chat_id列表是否包含当前chat_id chat_id_list = parse_chat_id_list(jargon.chat_id) if not chat_id_list_contains(chat_id_list, self.chat_id): continue # 在文本中查找匹配(大小写不敏感) pattern = re.escape(content) # 使用单词边界或中文字符边界来匹配,避免部分匹配 # 对于中文,使用Unicode字符类;对于英文,使用单词边界 if re.search(r"[\u4e00-\u9fff]", content): # 包含中文,使用更宽松的匹配 search_pattern = pattern else: # 纯英文/数字,使用单词边界 search_pattern = r"\b" + pattern + r"\b" if re.search(search_pattern, combined_text, re.IGNORECASE): # 找到匹配,记录(去重) if content not in matched_jargon: matched_jargon[content] = {"content": content} match_time = time.time() total_time = match_time - start_time query_duration = query_time - start_time match_duration = match_time - query_time logger.debug( f"黑话匹配完成: 查询耗时 {query_duration:.3f}s, 匹配耗时 {match_duration:.3f}s, " f"总耗时 {total_time:.3f}s, 匹配到 {len(matched_jargon)} 个黑话" ) return list(matched_jargon.values()) async def explain_jargon(self, messages: List[Any], chat_context: str) -> Optional[str]: """ 解释上下文中的黑话 Args: messages: 消息列表 chat_context: 聊天上下文的文本表示 Returns: Optional[str]: 黑话解释的概括文本,如果没有黑话则返回None """ if not messages: return None # 直接匹配方式:从数据库中查询jargon并在消息中匹配 jargon_entries = self.match_jargon_from_messages(messages) if not jargon_entries: return None # 去重(按content) unique_jargon: Dict[str, Dict[str, str]] = {} for entry in jargon_entries: content = entry["content"] if content not in unique_jargon: unique_jargon[content] = entry jargon_list = list(unique_jargon.values()) logger.info(f"从上下文中提取到 {len(jargon_list)} 个黑话: {[j['content'] for j in jargon_list]}") # 查询每个黑话的含义 jargon_explanations: List[str] = [] for entry in jargon_list: content = entry["content"] # 根据是否开启全局黑话,决定查询方式 if global_config.expression.all_global_jargon: # 开启全局黑话:查询所有is_global=True的记录 results = search_jargon( keyword=content, chat_id=None, # 不指定chat_id,查询全局黑话 limit=1, case_sensitive=False, fuzzy=False, # 精确匹配 ) else: # 关闭全局黑话:优先查询当前聊天或全局的黑话 results = search_jargon( keyword=content, chat_id=self.chat_id, limit=1, case_sensitive=False, fuzzy=False, # 精确匹配 ) if results and len(results) > 0: meaning = results[0].get("meaning", "").strip() if meaning: jargon_explanations.append(f"- {content}: {meaning}") else: logger.info(f"黑话 {content} 没有找到含义") else: logger.info(f"黑话 {content} 未在数据库中找到") if not jargon_explanations: logger.info("没有找到任何黑话的含义,跳过解释") return None # 拼接所有黑话解释 explanations_text = "\n".join(jargon_explanations) # 使用LLM概括黑话解释 prompt_of_summarize = prompt_manager.get_prompt("jargon_explainer_summarize_prompt") prompt_of_summarize.add_context("chat_context", lambda _: chat_context) prompt_of_summarize.add_context("jargon_explanations", lambda _: explanations_text) summarize_prompt = await prompt_manager.render_prompt(prompt_of_summarize) summary, _ = await self.llm.generate_response_async(summarize_prompt, temperature=0.3) if not summary: # 如果LLM概括失败,直接返回原始解释 return f"上下文中的黑话解释:\n{explanations_text}" summary = summary.strip() if not summary: return f"上下文中的黑话解释:\n{explanations_text}" return summary async def explain_jargon_in_context(chat_id: str, messages: List[Any], chat_context: str) -> Optional[str]: """ 解释上下文中的黑话(便捷函数) Args: chat_id: 聊天ID messages: 消息列表 chat_context: 聊天上下文的文本表示 Returns: Optional[str]: 黑话解释的概括文本,如果没有黑话则返回None """ explainer = JargonExplainer(chat_id) return await explainer.explain_jargon(messages, chat_context) def match_jargon_from_text(chat_text: str, chat_id: str) -> List[str]: """直接在聊天文本中匹配已知的jargon,返回出现过的黑话列表 Args: chat_text: 要匹配的聊天文本 chat_id: 聊天ID Returns: List[str]: 匹配到的黑话列表 """ if not chat_text or not chat_text.strip(): return [] query = Jargon.select().where((Jargon.meaning.is_null(False)) & (Jargon.meaning != "")) if global_config.expression.all_global_jargon: query = query.where(Jargon.is_global) query = query.order_by(Jargon.count.desc()) matched: Dict[str, None] = {} for jargon in query: content = (jargon.content or "").strip() if not content: continue if not global_config.expression.all_global_jargon and not jargon.is_global: chat_id_list = parse_chat_id_list(jargon.chat_id) if not chat_id_list_contains(chat_id_list, chat_id): continue pattern = re.escape(content) if re.search(r"[\u4e00-\u9fff]", content): search_pattern = pattern else: search_pattern = r"\b" + pattern + r"\b" if re.search(search_pattern, chat_text, re.IGNORECASE): matched[content] = None logger.info(f"匹配到 {len(matched)} 个黑话") return list(matched.keys()) async def retrieve_concepts_with_jargon(concepts: List[str], chat_id: str) -> str: """对概念列表进行jargon检索 Args: concepts: 概念列表 chat_id: 聊天ID Returns: str: 检索结果字符串 """ if not concepts: return "" results = [] exact_matches = [] # 收集所有精确匹配的概念 for concept in concepts: concept = concept.strip() if not concept: continue # 先尝试精确匹配 jargon_results = search_jargon(keyword=concept, chat_id=chat_id, limit=10, case_sensitive=False, fuzzy=False) is_fuzzy_match = False # 如果精确匹配未找到,尝试模糊搜索 if not jargon_results: jargon_results = search_jargon(keyword=concept, chat_id=chat_id, limit=10, case_sensitive=False, fuzzy=True) is_fuzzy_match = True if jargon_results: # 找到结果 if is_fuzzy_match: # 模糊匹配 output_parts = [f"未精确匹配到'{concept}'"] for result in jargon_results: found_content = result.get("content", "").strip() meaning = result.get("meaning", "").strip() if found_content and meaning: output_parts.append(f"找到 '{found_content}' 的含义为:{meaning}") results.append("\n".join(output_parts)) # 换行分隔每个jargon解释 logger.info(f"在jargon库中找到匹配(模糊搜索): {concept},找到{len(jargon_results)}条结果") else: # 精确匹配 output_parts = [] for result in jargon_results: meaning = result.get("meaning", "").strip() if meaning: output_parts.append(f"'{concept}' 为黑话或者网络简写,含义为:{meaning}") # 换行分隔每个jargon解释 results.append("\n".join(output_parts) if len(output_parts) > 1 else output_parts[0]) exact_matches.append(concept) # 收集精确匹配的概念,稍后统一打印 else: # 未找到,不返回占位信息,只记录日志 logger.info(f"在jargon库中未找到匹配: {concept}") # 合并所有精确匹配的日志 if exact_matches: logger.info(f"找到黑话: {', '.join(exact_matches)},共找到{len(exact_matches)}条结果") if results: return "你了解以下词语可能的含义:\n" + "\n".join(results) + "\n" return ""