mirror of https://github.com/Mai-with-u/MaiBot.git
1358 lines
62 KiB
Python
1358 lines
62 KiB
Python
import asyncio
|
||
import time
|
||
from random import random
|
||
from typing import List, Dict, Optional
|
||
import os
|
||
import pickle
|
||
from maim_message import UserInfo, Seg
|
||
from src.common.logger import get_logger
|
||
from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager
|
||
from src.chat.utils.timer_calculator import Timer
|
||
|
||
from src.chat.utils.prompt_builder import global_prompt_manager
|
||
from ..message_receive.message import MessageSending, MessageRecv, MessageThinking, MessageSet
|
||
from src.chat.message_receive.message_sender import message_manager
|
||
from src.chat.normal_chat.willing.willing_manager import get_willing_manager
|
||
from src.chat.normal_chat.normal_chat_utils import get_recent_message_stats
|
||
from src.config.config import global_config
|
||
from src.chat.focus_chat.planners.action_manager import ActionManager
|
||
from src.person_info.person_info import PersonInfoManager
|
||
from src.person_info.relationship_manager import get_relationship_manager
|
||
from src.chat.utils.chat_message_builder import (
|
||
get_raw_msg_by_timestamp_with_chat,
|
||
get_raw_msg_by_timestamp_with_chat_inclusive,
|
||
get_raw_msg_before_timestamp_with_chat,
|
||
num_new_messages_since,
|
||
)
|
||
from .priority_manager import PriorityManager
|
||
import traceback
|
||
|
||
from .normal_chat_generator import NormalChatGenerator
|
||
from src.chat.normal_chat.normal_chat_expressor import NormalChatExpressor
|
||
from src.chat.normal_chat.normal_chat_planner import NormalChatPlanner
|
||
from src.chat.normal_chat.normal_chat_action_modifier import NormalChatActionModifier
|
||
|
||
from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info
|
||
from src.manager.mood_manager import mood_manager
|
||
|
||
willing_manager = get_willing_manager()
|
||
|
||
logger = get_logger("normal_chat")
|
||
|
||
# 消息段清理配置
|
||
SEGMENT_CLEANUP_CONFIG = {
|
||
"enable_cleanup": True, # 是否启用清理
|
||
"max_segment_age_days": 7, # 消息段最大保存天数
|
||
"max_segments_per_user": 10, # 每用户最大消息段数
|
||
"cleanup_interval_hours": 1, # 清理间隔(小时)
|
||
}
|
||
|
||
|
||
class NormalChat:
|
||
"""
|
||
普通聊天处理类,负责处理非核心对话的聊天逻辑。
|
||
每个聊天(私聊或群聊)都会有一个独立的NormalChat实例。
|
||
"""
|
||
|
||
def __init__(self, chat_stream: ChatStream, interest_dict: dict = None, on_switch_to_focus_callback=None):
|
||
"""
|
||
初始化NormalChat实例。
|
||
|
||
Args:
|
||
chat_stream (ChatStream): 聊天流对象,包含与特定聊天相关的所有信息。
|
||
"""
|
||
self.chat_stream = chat_stream
|
||
self.stream_id = chat_stream.stream_id
|
||
|
||
self.stream_name = get_chat_manager().get_stream_name(self.stream_id) or self.stream_id
|
||
|
||
# 初始化Normal Chat专用表达器
|
||
self.expressor = NormalChatExpressor(self.chat_stream)
|
||
|
||
# Interest dict
|
||
self.interest_dict = interest_dict
|
||
|
||
self.is_group_chat, self.chat_target_info = get_chat_type_and_target_info(self.stream_id)
|
||
|
||
self.willing_amplifier = 1
|
||
self.start_time = time.time()
|
||
|
||
# Other sync initializations
|
||
self.gpt = NormalChatGenerator()
|
||
self.mood_manager = mood_manager
|
||
self.start_time = time.time()
|
||
|
||
self._initialized = False # Track initialization status
|
||
|
||
# Planner相关初始化
|
||
self.action_manager = ActionManager()
|
||
self.planner = NormalChatPlanner(self.stream_name, self.action_manager)
|
||
self.action_modifier = NormalChatActionModifier(self.action_manager, self.stream_id, self.stream_name)
|
||
self.enable_planner = global_config.normal_chat.enable_planner # 从配置中读取是否启用planner
|
||
|
||
# 记录最近的回复内容,每项包含: {time, user_message, response, is_mentioned, is_reference_reply}
|
||
self.recent_replies = []
|
||
self.max_replies_history = 20 # 最多保存最近20条回复记录
|
||
|
||
# 新的消息段缓存结构:
|
||
# {person_id: [{"start_time": float, "end_time": float, "last_msg_time": float, "message_count": int}, ...]}
|
||
self.person_engaged_cache: Dict[str, List[Dict[str, any]]] = {}
|
||
|
||
# 持久化存储文件路径
|
||
self.cache_file_path = os.path.join("data", "relationship", f"relationship_cache_{self.stream_id}.pkl")
|
||
|
||
# 最后处理的消息时间,避免重复处理相同消息
|
||
self.last_processed_message_time = 0.0
|
||
|
||
# 最后清理时间,用于定期清理老消息段
|
||
self.last_cleanup_time = 0.0
|
||
|
||
# 添加回调函数,用于在满足条件时通知切换到focus_chat模式
|
||
self.on_switch_to_focus_callback = on_switch_to_focus_callback
|
||
|
||
self._disabled = False # 增加停用标志
|
||
|
||
# 加载持久化的缓存
|
||
self._load_cache()
|
||
|
||
logger.debug(f"[{self.stream_name}] NormalChat 初始化完成 (异步部分)。")
|
||
|
||
self.action_type: Optional[str] = None # 当前动作类型
|
||
self.is_parallel_action: bool = False # 是否是可并行动作
|
||
|
||
# 任务管理
|
||
self._chat_task: Optional[asyncio.Task] = None
|
||
self._disabled = False # 停用标志
|
||
|
||
self.on_switch_to_focus_callback = on_switch_to_focus_callback
|
||
|
||
# 新增:回复模式和优先级管理器
|
||
self.reply_mode = self.chat_stream.context.get_priority_mode()
|
||
if self.reply_mode == "priority":
|
||
interest_dict = interest_dict or {}
|
||
self.priority_manager = PriorityManager(
|
||
interest_dict=interest_dict,
|
||
normal_queue_max_size=5,
|
||
)
|
||
else:
|
||
self.priority_manager = None
|
||
|
||
async def disable(self):
|
||
"""停用 NormalChat 实例,停止所有后台任务"""
|
||
self._disabled = True
|
||
if self._chat_task and not self._chat_task.done():
|
||
self._chat_task.cancel()
|
||
if self.reply_mode == "priority" and self._priority_chat_task and not self._priority_chat_task.done():
|
||
self._priority_chat_task.cancel()
|
||
logger.info(f"[{self.stream_name}] NormalChat 已停用。")
|
||
|
||
# ================================
|
||
# 缓存管理模块
|
||
# 负责持久化存储、状态管理、缓存读写
|
||
# ================================
|
||
|
||
def _load_cache(self):
|
||
"""从文件加载持久化的缓存"""
|
||
if os.path.exists(self.cache_file_path):
|
||
try:
|
||
with open(self.cache_file_path, "rb") as f:
|
||
cache_data = pickle.load(f)
|
||
# 新格式:包含额外信息的缓存
|
||
self.person_engaged_cache = cache_data.get("person_engaged_cache", {})
|
||
self.last_processed_message_time = cache_data.get("last_processed_message_time", 0.0)
|
||
self.last_cleanup_time = cache_data.get("last_cleanup_time", 0.0)
|
||
|
||
logger.info(
|
||
f"[{self.stream_name}] 成功加载关系缓存,包含 {len(self.person_engaged_cache)} 个用户,最后处理时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_processed_message_time)) if self.last_processed_message_time > 0 else '未设置'}"
|
||
)
|
||
except Exception as e:
|
||
logger.error(f"[{self.stream_name}] 加载关系缓存失败: {e}")
|
||
self.person_engaged_cache = {}
|
||
self.last_processed_message_time = 0.0
|
||
else:
|
||
logger.info(f"[{self.stream_name}] 关系缓存文件不存在,使用空缓存")
|
||
|
||
def _save_cache(self):
|
||
"""保存缓存到文件"""
|
||
try:
|
||
os.makedirs(os.path.dirname(self.cache_file_path), exist_ok=True)
|
||
cache_data = {
|
||
"person_engaged_cache": self.person_engaged_cache,
|
||
"last_processed_message_time": self.last_processed_message_time,
|
||
"last_cleanup_time": self.last_cleanup_time,
|
||
}
|
||
with open(self.cache_file_path, "wb") as f:
|
||
pickle.dump(cache_data, f)
|
||
logger.debug(f"[{self.stream_name}] 成功保存关系缓存")
|
||
except Exception as e:
|
||
logger.error(f"[{self.stream_name}] 保存关系缓存失败: {e}")
|
||
|
||
# ================================
|
||
# 消息段管理模块
|
||
# 负责跟踪用户消息活动、管理消息段、清理过期数据
|
||
# ================================
|
||
|
||
def _update_message_segments(self, person_id: str, message_time: float):
|
||
"""更新用户的消息段
|
||
|
||
Args:
|
||
person_id: 用户ID
|
||
message_time: 消息时间戳
|
||
"""
|
||
if person_id not in self.person_engaged_cache:
|
||
self.person_engaged_cache[person_id] = []
|
||
|
||
segments = self.person_engaged_cache[person_id]
|
||
current_time = time.time()
|
||
|
||
# 获取该消息前5条消息的时间作为潜在的开始时间
|
||
before_messages = get_raw_msg_before_timestamp_with_chat(self.stream_id, message_time, limit=5)
|
||
if before_messages:
|
||
# 由于get_raw_msg_before_timestamp_with_chat返回按时间升序排序的消息,最后一个是最接近message_time的
|
||
# 我们需要第一个消息作为开始时间,但应该确保至少包含5条消息或该用户之前的消息
|
||
potential_start_time = before_messages[0]["time"]
|
||
else:
|
||
# 如果没有前面的消息,就从当前消息开始
|
||
potential_start_time = message_time
|
||
|
||
# 如果没有现有消息段,创建新的
|
||
if not segments:
|
||
new_segment = {
|
||
"start_time": potential_start_time,
|
||
"end_time": message_time,
|
||
"last_msg_time": message_time,
|
||
"message_count": self._count_messages_in_timerange(potential_start_time, message_time),
|
||
}
|
||
segments.append(new_segment)
|
||
logger.debug(
|
||
f"[{self.stream_name}] 为用户 {person_id} 创建新消息段: 时间范围 {time.strftime('%H:%M:%S', time.localtime(potential_start_time))} - {time.strftime('%H:%M:%S', time.localtime(message_time))}, 消息数: {new_segment['message_count']}"
|
||
)
|
||
self._save_cache()
|
||
return
|
||
|
||
# 获取最后一个消息段
|
||
last_segment = segments[-1]
|
||
|
||
# 计算从最后一条消息到当前消息之间的消息数量(不包含边界)
|
||
messages_between = self._count_messages_between(last_segment["last_msg_time"], message_time)
|
||
|
||
if messages_between <= 10:
|
||
# 在10条消息内,延伸当前消息段
|
||
last_segment["end_time"] = message_time
|
||
last_segment["last_msg_time"] = message_time
|
||
# 重新计算整个消息段的消息数量
|
||
last_segment["message_count"] = self._count_messages_in_timerange(
|
||
last_segment["start_time"], last_segment["end_time"]
|
||
)
|
||
logger.debug(f"[{self.stream_name}] 延伸用户 {person_id} 的消息段: {last_segment}")
|
||
else:
|
||
# 超过10条消息,结束当前消息段并创建新的
|
||
# 结束当前消息段:延伸到原消息段最后一条消息后5条消息的时间
|
||
after_messages = get_raw_msg_by_timestamp_with_chat(
|
||
self.stream_id, last_segment["last_msg_time"], current_time, limit=5, limit_mode="earliest"
|
||
)
|
||
if after_messages and len(after_messages) >= 5:
|
||
# 如果有足够的后续消息,使用第5条消息的时间作为结束时间
|
||
last_segment["end_time"] = after_messages[4]["time"]
|
||
else:
|
||
# 如果没有足够的后续消息,保持原有的结束时间
|
||
pass
|
||
|
||
# 重新计算当前消息段的消息数量
|
||
last_segment["message_count"] = self._count_messages_in_timerange(
|
||
last_segment["start_time"], last_segment["end_time"]
|
||
)
|
||
|
||
# 创建新的消息段
|
||
new_segment = {
|
||
"start_time": potential_start_time,
|
||
"end_time": message_time,
|
||
"last_msg_time": message_time,
|
||
"message_count": self._count_messages_in_timerange(potential_start_time, message_time),
|
||
}
|
||
segments.append(new_segment)
|
||
logger.debug(f"[{self.stream_name}] 为用户 {person_id} 创建新消息段(超过10条消息间隔): {new_segment}")
|
||
|
||
self._save_cache()
|
||
|
||
def _count_messages_in_timerange(self, start_time: float, end_time: float) -> int:
|
||
"""计算指定时间范围内的消息数量(包含边界)"""
|
||
messages = get_raw_msg_by_timestamp_with_chat_inclusive(self.stream_id, start_time, end_time)
|
||
return len(messages)
|
||
|
||
def _count_messages_between(self, start_time: float, end_time: float) -> int:
|
||
"""计算两个时间点之间的消息数量(不包含边界),用于间隔检查"""
|
||
return num_new_messages_since(self.stream_id, start_time, end_time)
|
||
|
||
def _get_total_message_count(self, person_id: str) -> int:
|
||
"""获取用户所有消息段的总消息数量"""
|
||
if person_id not in self.person_engaged_cache:
|
||
return 0
|
||
|
||
total_count = 0
|
||
for segment in self.person_engaged_cache[person_id]:
|
||
total_count += segment["message_count"]
|
||
|
||
return total_count
|
||
|
||
def _cleanup_old_segments(self) -> bool:
|
||
"""清理老旧的消息段
|
||
|
||
Returns:
|
||
bool: 是否执行了清理操作
|
||
"""
|
||
if not SEGMENT_CLEANUP_CONFIG["enable_cleanup"]:
|
||
return False
|
||
|
||
current_time = time.time()
|
||
|
||
# 检查是否需要执行清理(基于时间间隔)
|
||
cleanup_interval_seconds = SEGMENT_CLEANUP_CONFIG["cleanup_interval_hours"] * 3600
|
||
if current_time - self.last_cleanup_time < cleanup_interval_seconds:
|
||
return False
|
||
|
||
logger.info(f"[{self.stream_name}] 开始执行老消息段清理...")
|
||
|
||
cleanup_stats = {
|
||
"users_cleaned": 0,
|
||
"segments_removed": 0,
|
||
"total_segments_before": 0,
|
||
"total_segments_after": 0,
|
||
}
|
||
|
||
max_age_seconds = SEGMENT_CLEANUP_CONFIG["max_segment_age_days"] * 24 * 3600
|
||
max_segments_per_user = SEGMENT_CLEANUP_CONFIG["max_segments_per_user"]
|
||
|
||
users_to_remove = []
|
||
|
||
for person_id, segments in self.person_engaged_cache.items():
|
||
cleanup_stats["total_segments_before"] += len(segments)
|
||
original_segment_count = len(segments)
|
||
|
||
# 1. 按时间清理:移除过期的消息段
|
||
segments_after_age_cleanup = []
|
||
for segment in segments:
|
||
segment_age = current_time - segment["end_time"]
|
||
if segment_age <= max_age_seconds:
|
||
segments_after_age_cleanup.append(segment)
|
||
else:
|
||
cleanup_stats["segments_removed"] += 1
|
||
logger.debug(
|
||
f"[{self.stream_name}] 移除用户 {person_id} 的过期消息段: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['start_time']))} - {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['end_time']))}"
|
||
)
|
||
|
||
# 2. 按数量清理:如果消息段数量仍然过多,保留最新的
|
||
if len(segments_after_age_cleanup) > max_segments_per_user:
|
||
# 按end_time排序,保留最新的
|
||
segments_after_age_cleanup.sort(key=lambda x: x["end_time"], reverse=True)
|
||
segments_removed_count = len(segments_after_age_cleanup) - max_segments_per_user
|
||
cleanup_stats["segments_removed"] += segments_removed_count
|
||
segments_after_age_cleanup = segments_after_age_cleanup[:max_segments_per_user]
|
||
logger.debug(
|
||
f"[{self.stream_name}] 用户 {person_id} 消息段数量过多,移除 {segments_removed_count} 个最老的消息段"
|
||
)
|
||
|
||
# 使用清理后的消息段
|
||
|
||
# 更新缓存
|
||
if len(segments_after_age_cleanup) == 0:
|
||
# 如果没有剩余消息段,标记用户为待移除
|
||
users_to_remove.append(person_id)
|
||
else:
|
||
self.person_engaged_cache[person_id] = segments_after_age_cleanup
|
||
cleanup_stats["total_segments_after"] += len(segments_after_age_cleanup)
|
||
|
||
if original_segment_count != len(segments_after_age_cleanup):
|
||
cleanup_stats["users_cleaned"] += 1
|
||
|
||
# 移除没有消息段的用户
|
||
for person_id in users_to_remove:
|
||
del self.person_engaged_cache[person_id]
|
||
logger.debug(f"[{self.stream_name}] 移除用户 {person_id}:没有剩余消息段")
|
||
|
||
# 更新最后清理时间
|
||
self.last_cleanup_time = current_time
|
||
|
||
# 保存缓存
|
||
if cleanup_stats["segments_removed"] > 0 or len(users_to_remove) > 0:
|
||
self._save_cache()
|
||
logger.info(
|
||
f"[{self.stream_name}] 清理完成 - 影响用户: {cleanup_stats['users_cleaned']}, 移除消息段: {cleanup_stats['segments_removed']}, 移除用户: {len(users_to_remove)}"
|
||
)
|
||
logger.info(
|
||
f"[{self.stream_name}] 消息段统计 - 清理前: {cleanup_stats['total_segments_before']}, 清理后: {cleanup_stats['total_segments_after']}"
|
||
)
|
||
else:
|
||
logger.debug(f"[{self.stream_name}] 清理完成 - 无需清理任何内容")
|
||
|
||
return cleanup_stats["segments_removed"] > 0 or len(users_to_remove) > 0
|
||
|
||
def get_cache_status(self) -> str:
|
||
"""获取缓存状态信息,用于调试和监控"""
|
||
if not self.person_engaged_cache:
|
||
return f"[{self.stream_name}] 关系缓存为空"
|
||
|
||
status_lines = [f"[{self.stream_name}] 关系缓存状态:"]
|
||
status_lines.append(
|
||
f"最后处理消息时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_processed_message_time)) if self.last_processed_message_time > 0 else '未设置'}"
|
||
)
|
||
status_lines.append(
|
||
f"最后清理时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_cleanup_time)) if self.last_cleanup_time > 0 else '未执行'}"
|
||
)
|
||
status_lines.append(f"总用户数:{len(self.person_engaged_cache)}")
|
||
status_lines.append(
|
||
f"清理配置:{'启用' if SEGMENT_CLEANUP_CONFIG['enable_cleanup'] else '禁用'} (最大保存{SEGMENT_CLEANUP_CONFIG['max_segment_age_days']}天, 每用户最多{SEGMENT_CLEANUP_CONFIG['max_segments_per_user']}段)"
|
||
)
|
||
status_lines.append("")
|
||
|
||
for person_id, segments in self.person_engaged_cache.items():
|
||
total_count = self._get_total_message_count(person_id)
|
||
status_lines.append(f"用户 {person_id}:")
|
||
status_lines.append(f" 总消息数:{total_count} ({total_count}/45)")
|
||
status_lines.append(f" 消息段数:{len(segments)}")
|
||
|
||
for i, segment in enumerate(segments):
|
||
start_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(segment["start_time"]))
|
||
end_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(segment["end_time"]))
|
||
last_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(segment["last_msg_time"]))
|
||
status_lines.append(
|
||
f" 段{i + 1}: {start_str} -> {end_str} (最后消息: {last_str}, 消息数: {segment['message_count']})"
|
||
)
|
||
status_lines.append("")
|
||
|
||
return "\n".join(status_lines)
|
||
|
||
def _update_user_message_segments(self, message: MessageRecv):
|
||
"""更新用户消息段信息"""
|
||
time.time()
|
||
user_id = message.message_info.user_info.user_id
|
||
platform = message.message_info.platform
|
||
msg_time = message.message_info.time
|
||
|
||
# 跳过机器人自己的消息
|
||
if user_id == global_config.bot.qq_account:
|
||
return
|
||
|
||
# 只处理新消息(避免重复处理)
|
||
if msg_time <= self.last_processed_message_time:
|
||
return
|
||
|
||
person_id = PersonInfoManager.get_person_id(platform, user_id)
|
||
self._update_message_segments(person_id, msg_time)
|
||
|
||
# 更新最后处理时间
|
||
self.last_processed_message_time = max(self.last_processed_message_time, msg_time)
|
||
logger.debug(
|
||
f"[{self.stream_name}] 更新用户 {person_id} 的消息段,消息时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(msg_time))}"
|
||
)
|
||
|
||
async def _priority_chat_loop_add_message(self):
|
||
while not self._disabled:
|
||
try:
|
||
ids = list(self.interest_dict.keys())
|
||
for msg_id in ids:
|
||
message, interest_value, _ = self.interest_dict[msg_id]
|
||
if not self._disabled:
|
||
# 更新消息段信息
|
||
self._update_user_message_segments(message)
|
||
|
||
# 添加消息到优先级管理器
|
||
if self.priority_manager:
|
||
self.priority_manager.add_message(message, interest_value)
|
||
self.interest_dict.pop(msg_id, None)
|
||
except Exception:
|
||
logger.error(
|
||
f"[{self.stream_name}] 优先级聊天循环添加消息时出现错误: {traceback.format_exc()}", exc_info=True
|
||
)
|
||
print(traceback.format_exc())
|
||
# 出现错误时,等待一段时间再重试
|
||
raise
|
||
await asyncio.sleep(0.1)
|
||
|
||
async def _priority_chat_loop(self):
|
||
"""
|
||
使用优先级队列的消息处理循环。
|
||
"""
|
||
while not self._disabled:
|
||
try:
|
||
if not self.priority_manager.is_empty():
|
||
# 获取最高优先级的消息
|
||
message = self.priority_manager.get_highest_priority_message()
|
||
|
||
if message:
|
||
logger.info(
|
||
f"[{self.stream_name}] 从队列中取出消息进行处理: User {message.message_info.user_info.user_id}, Time: {time.strftime('%H:%M:%S', time.localtime(message.message_info.time))}"
|
||
)
|
||
# 执行定期清理
|
||
self._cleanup_old_segments()
|
||
|
||
# 更新消息段信息
|
||
self._update_user_message_segments(message)
|
||
|
||
# 检查是否有用户满足关系构建条件
|
||
asyncio.create_task(self._check_relation_building_conditions())
|
||
|
||
await self.reply_one_message(message)
|
||
|
||
# 等待一段时间再检查队列
|
||
await asyncio.sleep(1)
|
||
|
||
except asyncio.CancelledError:
|
||
logger.info(f"[{self.stream_name}] 优先级聊天循环被取消。")
|
||
break
|
||
except Exception:
|
||
logger.error(f"[{self.stream_name}] 优先级聊天循环出现错误: {traceback.format_exc()}", exc_info=True)
|
||
# 出现错误时,等待更长时间避免频繁报错
|
||
await asyncio.sleep(10)
|
||
|
||
# 改为实例方法
|
||
async def _create_thinking_message(self, message: MessageRecv, timestamp: Optional[float] = None) -> str:
|
||
"""创建思考消息"""
|
||
messageinfo = message.message_info
|
||
|
||
bot_user_info = UserInfo(
|
||
user_id=global_config.bot.qq_account,
|
||
user_nickname=global_config.bot.nickname,
|
||
platform=messageinfo.platform,
|
||
)
|
||
|
||
thinking_time_point = round(time.time(), 2)
|
||
thinking_id = "tid" + str(thinking_time_point)
|
||
thinking_message = MessageThinking(
|
||
message_id=thinking_id,
|
||
chat_stream=self.chat_stream,
|
||
bot_user_info=bot_user_info,
|
||
reply=message,
|
||
thinking_start_time=thinking_time_point,
|
||
timestamp=timestamp if timestamp is not None else None,
|
||
)
|
||
|
||
await message_manager.add_message(thinking_message)
|
||
return thinking_id
|
||
|
||
# 改为实例方法
|
||
async def _add_messages_to_manager(
|
||
self, message: MessageRecv, response_set: List[str], thinking_id
|
||
) -> Optional[MessageSending]:
|
||
"""发送回复消息"""
|
||
container = await message_manager.get_container(self.stream_id) # 使用 self.stream_id
|
||
thinking_message = None
|
||
|
||
for msg in container.messages[:]:
|
||
if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id:
|
||
thinking_message = msg
|
||
container.messages.remove(msg)
|
||
break
|
||
|
||
if not thinking_message:
|
||
logger.warning(f"[{self.stream_name}] 未找到对应的思考消息 {thinking_id},可能已超时被移除")
|
||
return None
|
||
|
||
thinking_start_time = thinking_message.thinking_start_time
|
||
message_set = MessageSet(self.chat_stream, thinking_id) # 使用 self.chat_stream
|
||
|
||
mark_head = False
|
||
first_bot_msg = None
|
||
for msg in response_set:
|
||
if global_config.experimental.debug_show_chat_mode:
|
||
msg += "ⁿ"
|
||
message_segment = Seg(type="text", data=msg)
|
||
bot_message = MessageSending(
|
||
message_id=thinking_id,
|
||
chat_stream=self.chat_stream, # 使用 self.chat_stream
|
||
bot_user_info=UserInfo(
|
||
user_id=global_config.bot.qq_account,
|
||
user_nickname=global_config.bot.nickname,
|
||
platform=message.message_info.platform,
|
||
),
|
||
sender_info=message.message_info.user_info,
|
||
message_segment=message_segment,
|
||
reply=message,
|
||
is_head=not mark_head,
|
||
is_emoji=False,
|
||
thinking_start_time=thinking_start_time,
|
||
apply_set_reply_logic=True,
|
||
)
|
||
if not mark_head:
|
||
mark_head = True
|
||
first_bot_msg = bot_message
|
||
message_set.add_message(bot_message)
|
||
|
||
await message_manager.add_message(message_set)
|
||
|
||
return first_bot_msg
|
||
|
||
async def _reply_interested_message(self) -> None:
|
||
"""
|
||
后台任务方法,轮询当前实例关联chat的兴趣消息
|
||
通常由start_monitoring_interest()启动
|
||
"""
|
||
logger.debug(f"[{self.stream_name}] 兴趣监控任务开始")
|
||
|
||
try:
|
||
while True:
|
||
# 第一层检查:立即检查取消和停用状态
|
||
if self._disabled:
|
||
logger.info(f"[{self.stream_name}] 检测到停用标志,退出兴趣监控")
|
||
break
|
||
|
||
# 检查当前任务是否已被取消
|
||
current_task = asyncio.current_task()
|
||
if current_task and current_task.cancelled():
|
||
logger.info(f"[{self.stream_name}] 当前任务已被取消,退出")
|
||
break
|
||
|
||
try:
|
||
# 短暂等待,让出控制权
|
||
await asyncio.sleep(0.1)
|
||
|
||
# 第二层检查:睡眠后再次检查状态
|
||
if self._disabled:
|
||
logger.info(f"[{self.stream_name}] 睡眠后检测到停用标志,退出")
|
||
break
|
||
|
||
# 获取待处理消息
|
||
items_to_process = list(self.interest_dict.items())
|
||
if not items_to_process:
|
||
# 没有消息时继续下一轮循环
|
||
continue
|
||
|
||
# 第三层检查:在处理消息前最后检查一次
|
||
if self._disabled:
|
||
logger.info(f"[{self.stream_name}] 处理消息前检测到停用标志,退出")
|
||
break
|
||
|
||
# 使用异步上下文管理器处理消息
|
||
try:
|
||
async with global_prompt_manager.async_message_scope(
|
||
self.chat_stream.context.get_template_name()
|
||
):
|
||
# 在上下文内部再次检查取消状态
|
||
if self._disabled:
|
||
logger.info(f"[{self.stream_name}] 在处理上下文中检测到停止信号,退出")
|
||
break
|
||
|
||
# 并行处理兴趣消息
|
||
async def process_single_message(msg_id, message, interest_value, is_mentioned):
|
||
"""处理单个兴趣消息"""
|
||
try:
|
||
# 在处理每个消息前检查停止状态
|
||
if self._disabled:
|
||
logger.debug(f"[{self.stream_name}] 处理消息时检测到停用,跳过消息 {msg_id}")
|
||
return
|
||
|
||
# 处理消息
|
||
self.adjust_reply_frequency()
|
||
|
||
await self.normal_response(
|
||
message=message,
|
||
is_mentioned=is_mentioned,
|
||
interested_rate=interest_value * self.willing_amplifier,
|
||
)
|
||
except asyncio.CancelledError:
|
||
logger.debug(f"[{self.stream_name}] 处理消息 {msg_id} 时被取消")
|
||
raise # 重新抛出取消异常
|
||
except Exception as e:
|
||
logger.error(f"[{self.stream_name}] 处理兴趣消息{msg_id}时出错: {e}")
|
||
# 不打印完整traceback,避免日志污染
|
||
finally:
|
||
# 无论如何都要清理消息
|
||
self.interest_dict.pop(msg_id, None)
|
||
|
||
# 创建并行任务列表
|
||
coroutines = []
|
||
for msg_id, (message, interest_value, is_mentioned) in items_to_process:
|
||
coroutine = process_single_message(msg_id, message, interest_value, is_mentioned)
|
||
coroutines.append(coroutine)
|
||
|
||
# 并行执行所有任务,限制并发数量避免资源过度消耗
|
||
if coroutines:
|
||
# 使用信号量控制并发数,最多同时处理5个消息
|
||
semaphore = asyncio.Semaphore(5)
|
||
|
||
async def limited_process(coroutine, sem):
|
||
async with sem:
|
||
await coroutine
|
||
|
||
limited_tasks = [limited_process(coroutine, semaphore) for coroutine in coroutines]
|
||
await asyncio.gather(*limited_tasks, return_exceptions=True)
|
||
|
||
except asyncio.CancelledError:
|
||
logger.info(f"[{self.stream_name}] 处理上下文时任务被取消")
|
||
break
|
||
except Exception as e:
|
||
logger.error(f"[{self.stream_name}] 处理上下文时出错: {e}")
|
||
# 出错后短暂等待,避免快速重试
|
||
await asyncio.sleep(0.5)
|
||
|
||
except asyncio.CancelledError:
|
||
logger.info(f"[{self.stream_name}] 主循环中任务被取消")
|
||
break
|
||
except Exception as e:
|
||
logger.error(f"[{self.stream_name}] 主循环出错: {e}")
|
||
# 出错后等待一秒再继续
|
||
await asyncio.sleep(1.0)
|
||
|
||
except asyncio.CancelledError:
|
||
logger.info(f"[{self.stream_name}] 兴趣监控任务被取消")
|
||
except Exception as e:
|
||
logger.error(f"[{self.stream_name}] 兴趣监控任务严重错误: {e}")
|
||
finally:
|
||
logger.debug(f"[{self.stream_name}] 兴趣监控任务结束")
|
||
|
||
# 改为实例方法, 移除 chat 参数
|
||
async def normal_response(self, message: MessageRecv, is_mentioned: bool, interested_rate: float) -> None:
|
||
"""
|
||
处理接收到的消息。
|
||
根据回复模式,决定是立即处理还是放入优先级队列。
|
||
"""
|
||
if self._disabled:
|
||
return
|
||
|
||
# 根据回复模式决定行为
|
||
if self.reply_mode == "priority":
|
||
# 优先模式下,所有消息都进入管理器
|
||
if self.priority_manager:
|
||
self.priority_manager.add_message(message)
|
||
return
|
||
|
||
# --- 以下为原有的 "兴趣" 模式逻辑 ---
|
||
await self._process_message(message, is_mentioned, interested_rate)
|
||
|
||
async def _process_message(self, message: MessageRecv, is_mentioned: bool, interested_rate: float) -> None:
|
||
"""
|
||
实际处理单条消息的逻辑,包括意愿判断、回复生成、动作执行等。
|
||
"""
|
||
if self._disabled:
|
||
return
|
||
|
||
# 新增:在auto模式下检查是否需要直接切换到focus模式
|
||
if global_config.chat.chat_mode == "auto":
|
||
if await self._check_should_switch_to_focus():
|
||
logger.info(f"[{self.stream_name}] 检测到切换到focus聊天模式的条件,直接执行切换")
|
||
if self.on_switch_to_focus_callback:
|
||
await self.on_switch_to_focus_callback()
|
||
return
|
||
else:
|
||
logger.warning(f"[{self.stream_name}] 没有设置切换到focus聊天模式的回调函数,无法执行切换")
|
||
|
||
# 执行定期清理
|
||
self._cleanup_old_segments()
|
||
|
||
# 更新消息段信息
|
||
self._update_user_message_segments(message)
|
||
|
||
# 检查是否有用户满足关系构建条件
|
||
asyncio.create_task(self._check_relation_building_conditions())
|
||
|
||
timing_results = {}
|
||
reply_probability = (
|
||
1.0 if is_mentioned and global_config.normal_chat.mentioned_bot_inevitable_reply else 0.0
|
||
) # 如果被提及,且开启了提及必回复,则基础概率为1,否则需要意愿判断
|
||
|
||
# 意愿管理器:设置当前message信息
|
||
willing_manager.setup(message, self.chat_stream, is_mentioned, interested_rate)
|
||
|
||
# 获取回复概率
|
||
# is_willing = False
|
||
# 仅在未被提及或基础概率不为1时查询意愿概率
|
||
if reply_probability < 1: # 简化逻辑,如果未提及 (reply_probability 为 0),则获取意愿概率
|
||
# is_willing = True
|
||
reply_probability = await willing_manager.get_reply_probability(message.message_info.message_id)
|
||
|
||
if message.message_info.additional_config:
|
||
if "maimcore_reply_probability_gain" in message.message_info.additional_config.keys():
|
||
reply_probability += message.message_info.additional_config["maimcore_reply_probability_gain"]
|
||
reply_probability = min(max(reply_probability, 0), 1) # 确保概率在 0-1 之间
|
||
|
||
# 打印消息信息
|
||
mes_name = self.chat_stream.group_info.group_name if self.chat_stream.group_info else "私聊"
|
||
# current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time))
|
||
# 使用 self.stream_id
|
||
# willing_log = f"[激活值:{await willing_manager.get_willing(self.stream_id):.2f}]" if is_willing else ""
|
||
logger.info(
|
||
f"[{mes_name}]"
|
||
f"{message.message_info.user_info.user_nickname}:" # 使用 self.chat_stream
|
||
f"{message.processed_plain_text}[兴趣:{interested_rate:.2f}][回复概率:{reply_probability * 100:.1f}%]"
|
||
)
|
||
do_reply = False
|
||
response_set = None # 初始化 response_set
|
||
if random() < reply_probability:
|
||
with Timer("获取回复", timing_results):
|
||
await willing_manager.before_generate_reply_handle(message.message_info.message_id)
|
||
do_reply = await self.reply_one_message(message)
|
||
response_set = do_reply if do_reply else None
|
||
# 输出性能计时结果
|
||
if do_reply and response_set: # 确保 response_set 不是 None
|
||
timing_str = " | ".join([f"{step}: {duration:.2f}秒" for step, duration in timing_results.items()])
|
||
trigger_msg = message.processed_plain_text
|
||
response_msg = " ".join(response_set)
|
||
logger.info(
|
||
f"[{self.stream_name}]回复消息: {trigger_msg[:30]}... | 回复内容: {response_msg[:30]}... | 计时: {timing_str}"
|
||
)
|
||
await willing_manager.after_generate_reply_handle(message.message_info.message_id)
|
||
elif not do_reply:
|
||
# 不回复处理
|
||
await willing_manager.not_reply_handle(message.message_info.message_id)
|
||
|
||
# 意愿管理器:注销当前message信息 (无论是否回复,只要处理过就删除)
|
||
willing_manager.delete(message.message_info.message_id)
|
||
|
||
async def reply_one_message(self, message: MessageRecv) -> None:
|
||
# 回复前处理
|
||
thinking_id = await self._create_thinking_message(message)
|
||
|
||
# 如果启用planner,预先修改可用actions(避免在并行任务中重复调用)
|
||
available_actions = None
|
||
if self.enable_planner:
|
||
try:
|
||
await self.action_modifier.modify_actions_for_normal_chat(
|
||
self.chat_stream, self.recent_replies, message.processed_plain_text
|
||
)
|
||
available_actions = self.action_manager.get_using_actions_for_mode("normal")
|
||
except Exception as e:
|
||
logger.warning(f"[{self.stream_name}] 获取available_actions失败: {e}")
|
||
available_actions = None
|
||
|
||
# 定义并行执行的任务
|
||
async def generate_normal_response():
|
||
"""生成普通回复"""
|
||
try:
|
||
return await self.gpt.generate_response(
|
||
message=message,
|
||
available_actions=available_actions,
|
||
)
|
||
except Exception as e:
|
||
logger.error(f"[{self.stream_name}] 回复生成出现错误:{str(e)} {traceback.format_exc()}")
|
||
return None
|
||
|
||
async def plan_and_execute_actions():
|
||
"""规划和执行额外动作"""
|
||
if not self.enable_planner:
|
||
logger.debug(f"[{self.stream_name}] Planner未启用,跳过动作规划")
|
||
return None
|
||
|
||
try:
|
||
# 获取发送者名称(动作修改已在并行执行前完成)
|
||
sender_name = self._get_sender_name(message)
|
||
|
||
no_action = {
|
||
"action_result": {
|
||
"action_type": "no_action",
|
||
"action_data": {},
|
||
"reasoning": "规划器初始化默认",
|
||
"is_parallel": True,
|
||
},
|
||
"chat_context": "",
|
||
"action_prompt": "",
|
||
}
|
||
|
||
# 检查是否应该跳过规划
|
||
if self.action_modifier.should_skip_planning():
|
||
logger.debug(f"[{self.stream_name}] 没有可用动作,跳过规划")
|
||
self.action_type = "no_action"
|
||
return no_action
|
||
|
||
# 执行规划
|
||
plan_result = await self.planner.plan(message, sender_name)
|
||
action_type = plan_result["action_result"]["action_type"]
|
||
action_data = plan_result["action_result"]["action_data"]
|
||
reasoning = plan_result["action_result"]["reasoning"]
|
||
is_parallel = plan_result["action_result"].get("is_parallel", False)
|
||
|
||
logger.info(
|
||
f"[{self.stream_name}] Planner决策: {action_type}, 理由: {reasoning}, 并行执行: {is_parallel}"
|
||
)
|
||
self.action_type = action_type # 更新实例属性
|
||
self.is_parallel_action = is_parallel # 新增:保存并行执行标志
|
||
|
||
# 如果规划器决定不执行任何动作
|
||
if action_type == "no_action":
|
||
logger.debug(f"[{self.stream_name}] Planner决定不执行任何额外动作")
|
||
return no_action
|
||
|
||
# 执行额外的动作(不影响回复生成)
|
||
action_result = await self._execute_action(action_type, action_data, message, thinking_id)
|
||
if action_result is not None:
|
||
logger.info(f"[{self.stream_name}] 额外动作 {action_type} 执行完成")
|
||
else:
|
||
logger.warning(f"[{self.stream_name}] 额外动作 {action_type} 执行失败")
|
||
|
||
return {
|
||
"action_type": action_type,
|
||
"action_data": action_data,
|
||
"reasoning": reasoning,
|
||
"is_parallel": is_parallel,
|
||
}
|
||
|
||
except Exception as e:
|
||
logger.error(f"[{self.stream_name}] Planner执行失败: {e}")
|
||
return no_action
|
||
|
||
# 并行执行回复生成和动作规划
|
||
self.action_type = None # 初始化动作类型
|
||
self.is_parallel_action = False # 初始化并行动作标志
|
||
response_set, plan_result = await asyncio.gather(
|
||
generate_normal_response(), plan_and_execute_actions(), return_exceptions=True
|
||
)
|
||
|
||
# 处理生成回复的结果
|
||
if isinstance(response_set, Exception):
|
||
logger.error(f"[{self.stream_name}] 回复生成异常: {response_set}")
|
||
response_set = None
|
||
|
||
# 处理规划结果(可选,不影响回复)
|
||
if isinstance(plan_result, Exception):
|
||
logger.error(f"[{self.stream_name}] 动作规划异常: {plan_result}")
|
||
elif plan_result:
|
||
logger.debug(f"[{self.stream_name}] 额外动作处理完成: {self.action_type}")
|
||
|
||
if not response_set or (
|
||
self.enable_planner and self.action_type not in ["no_action"] and not self.is_parallel_action
|
||
):
|
||
if not response_set:
|
||
logger.info(f"[{self.stream_name}] 模型未生成回复内容")
|
||
elif self.enable_planner and self.action_type not in ["no_action"] and not self.is_parallel_action:
|
||
logger.info(f"[{self.stream_name}] 模型选择其他动作(非并行动作)")
|
||
# 如果模型未生成回复,移除思考消息
|
||
container = await message_manager.get_container(self.stream_id) # 使用 self.stream_id
|
||
for msg in container.messages[:]:
|
||
if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id:
|
||
container.messages.remove(msg)
|
||
logger.debug(f"[{self.stream_name}] 已移除未产生回复的思考消息 {thinking_id}")
|
||
break
|
||
# 需要在此处也调用 not_reply_handle 和 delete 吗?
|
||
# 如果是因为模型没回复,也算是一种 "未回复"
|
||
return False
|
||
|
||
# logger.info(f"[{self.stream_name}] 回复内容: {response_set}")
|
||
|
||
if self._disabled:
|
||
logger.info(f"[{self.stream_name}] 已停用,忽略 normal_response。")
|
||
return False
|
||
|
||
# 发送回复 (不再需要传入 chat)
|
||
first_bot_msg = await self._add_messages_to_manager(message, response_set, thinking_id)
|
||
|
||
# 检查 first_bot_msg 是否为 None (例如思考消息已被移除的情况)
|
||
if first_bot_msg:
|
||
# 消息段已在接收消息时更新,这里不需要额外处理
|
||
|
||
# 记录回复信息到最近回复列表中
|
||
reply_info = {
|
||
"time": time.time(),
|
||
"user_message": message.processed_plain_text,
|
||
"user_info": {
|
||
"user_id": message.message_info.user_info.user_id,
|
||
"user_nickname": message.message_info.user_info.user_nickname,
|
||
},
|
||
"response": response_set,
|
||
# "is_mentioned": is_mentioned,
|
||
"is_reference_reply": message.reply is not None, # 判断是否为引用回复
|
||
# "timing": {k: round(v, 2) for k, v in timing_results.items()},
|
||
}
|
||
self.recent_replies.append(reply_info)
|
||
# 保持最近回复历史在限定数量内
|
||
if len(self.recent_replies) > self.max_replies_history:
|
||
self.recent_replies = self.recent_replies[-self.max_replies_history :]
|
||
return response_set if response_set else False
|
||
|
||
# 改为实例方法, 移除 chat 参数
|
||
|
||
async def start_chat(self):
|
||
"""启动聊天任务。"""
|
||
logger.debug(f"[{self.stream_name}] 开始启动聊天任务")
|
||
|
||
# 重置停用标志
|
||
self._disabled = False
|
||
|
||
# 检查是否已有运行中的任务
|
||
if self._chat_task and not self._chat_task.done():
|
||
logger.info(f"[{self.stream_name}] 聊天轮询任务已在运行中。")
|
||
return
|
||
|
||
# 清理可能存在的已完成任务引用
|
||
if self._chat_task and self._chat_task.done():
|
||
self._chat_task = None
|
||
|
||
try:
|
||
logger.info(f"[{self.stream_name}] 创建新的聊天轮询任务,模式: {self.reply_mode}")
|
||
if self.reply_mode == "priority":
|
||
polling_task_send = asyncio.create_task(self._priority_chat_loop())
|
||
polling_task_recv = asyncio.create_task(self._priority_chat_loop_add_message())
|
||
print("555")
|
||
polling_task = asyncio.gather(polling_task_send, polling_task_recv)
|
||
print("666")
|
||
|
||
else: # 默认或 "interest" 模式
|
||
polling_task = asyncio.create_task(self._reply_interested_message())
|
||
|
||
# 设置回调
|
||
polling_task.add_done_callback(lambda t: self._handle_task_completion(t))
|
||
|
||
# 保存任务引用
|
||
self._chat_task = polling_task
|
||
|
||
logger.debug(f"[{self.stream_name}] 聊天任务启动完成")
|
||
|
||
except Exception as e:
|
||
logger.error(f"[{self.stream_name}] 启动聊天任务失败: {e}")
|
||
self._chat_task = None
|
||
raise
|
||
|
||
def _handle_task_completion(self, task: asyncio.Task):
|
||
"""任务完成回调处理"""
|
||
try:
|
||
# 简化回调逻辑,避免复杂的异常处理
|
||
logger.debug(f"[{self.stream_name}] 任务完成回调被调用")
|
||
|
||
# 检查是否是我们管理的任务
|
||
if task is not self._chat_task:
|
||
# 如果已经不是当前任务(可能在stop_chat中已被清空),直接返回
|
||
logger.debug(f"[{self.stream_name}] 回调的任务不是当前管理的任务")
|
||
return
|
||
|
||
# 清理任务引用
|
||
self._chat_task = None
|
||
logger.debug(f"[{self.stream_name}] 任务引用已清理")
|
||
|
||
# 简单记录任务状态,不进行复杂处理
|
||
if task.cancelled():
|
||
logger.debug(f"[{self.stream_name}] 任务已取消")
|
||
elif task.done():
|
||
try:
|
||
# 尝试获取异常,但不抛出
|
||
exc = task.exception()
|
||
if exc:
|
||
logger.error(f"[{self.stream_name}] 任务异常: {type(exc).__name__}: {exc}", exc_info=exc)
|
||
else:
|
||
logger.debug(f"[{self.stream_name}] 任务正常完成")
|
||
except Exception as e:
|
||
# 获取异常时也可能出错,静默处理
|
||
logger.debug(f"[{self.stream_name}] 获取任务异常时出错: {e}")
|
||
|
||
except Exception as e:
|
||
# 回调函数中的任何异常都要捕获,避免影响系统
|
||
logger.error(f"[{self.stream_name}] 任务完成回调处理出错: {e}")
|
||
# 确保任务引用被清理
|
||
self._chat_task = None
|
||
|
||
# 改为实例方法, 移除 stream_id 参数
|
||
async def stop_chat(self):
|
||
"""停止当前实例的兴趣监控任务。"""
|
||
logger.debug(f"[{self.stream_name}] 开始停止聊天任务")
|
||
|
||
# 立即设置停用标志,防止新任务启动
|
||
self._disabled = True
|
||
|
||
# 如果没有运行中的任务,直接返回
|
||
if not self._chat_task or self._chat_task.done():
|
||
logger.debug(f"[{self.stream_name}] 没有运行中的任务,直接完成停止")
|
||
self._chat_task = None
|
||
return
|
||
|
||
# 保存任务引用并立即清空,避免回调中的循环引用
|
||
task_to_cancel = self._chat_task
|
||
self._chat_task = None
|
||
|
||
logger.debug(f"[{self.stream_name}] 取消聊天任务")
|
||
|
||
# 尝试优雅取消任务
|
||
task_to_cancel.cancel()
|
||
|
||
# 不等待任务完成,让它自然结束
|
||
# 这样可以避免等待过程中的潜在递归问题
|
||
|
||
# 异步清理思考消息,不阻塞当前流程
|
||
asyncio.create_task(self._cleanup_thinking_messages_async())
|
||
|
||
logger.debug(f"[{self.stream_name}] 聊天任务停止完成")
|
||
|
||
async def _cleanup_thinking_messages_async(self):
|
||
"""异步清理思考消息,避免阻塞主流程"""
|
||
try:
|
||
# 添加短暂延迟,让任务有时间响应取消
|
||
await asyncio.sleep(0.1)
|
||
|
||
container = await message_manager.get_container(self.stream_id)
|
||
if container:
|
||
# 查找并移除所有 MessageThinking 类型的消息
|
||
thinking_messages = [msg for msg in container.messages[:] if isinstance(msg, MessageThinking)]
|
||
if thinking_messages:
|
||
for msg in thinking_messages:
|
||
container.messages.remove(msg)
|
||
logger.info(f"[{self.stream_name}] 清理了 {len(thinking_messages)} 条未处理的思考消息。")
|
||
except Exception as e:
|
||
logger.error(f"[{self.stream_name}] 异步清理思考消息时出错: {e}")
|
||
# 不打印完整栈跟踪,避免日志污染
|
||
|
||
# 获取最近回复记录的方法
|
||
def get_recent_replies(self, limit: int = 10) -> List[dict]:
|
||
"""获取最近的回复记录
|
||
|
||
Args:
|
||
limit: 最大返回数量,默认10条
|
||
|
||
Returns:
|
||
List[dict]: 最近的回复记录列表,每项包含:
|
||
time: 回复时间戳
|
||
user_message: 用户消息内容
|
||
user_info: 用户信息(user_id, user_nickname)
|
||
response: 回复内容
|
||
is_mentioned: 是否被提及(@)
|
||
is_reference_reply: 是否为引用回复
|
||
timing: 各阶段耗时
|
||
"""
|
||
# 返回最近的limit条记录,按时间倒序排列
|
||
return sorted(self.recent_replies[-limit:], key=lambda x: x["time"], reverse=True)
|
||
|
||
def adjust_reply_frequency(self):
|
||
"""
|
||
根据预设规则动态调整回复意愿(willing_amplifier)。
|
||
- 评估周期:10分钟
|
||
- 目标频率:由 global_config.chat.talk_frequency 定义(例如 1条/分钟)
|
||
- 调整逻辑:
|
||
- 0条回复 -> 5.0x 意愿
|
||
- 达到目标回复数 -> 1.0x 意愿(基准)
|
||
- 达到目标2倍回复数 -> 0.2x 意愿
|
||
- 中间值线性变化
|
||
- 增益抑制:如果最近5分钟回复过快,则不增加意愿。
|
||
"""
|
||
# --- 1. 定义参数 ---
|
||
evaluation_minutes = 10.0
|
||
target_replies_per_min = global_config.chat.get_current_talk_frequency(
|
||
self.stream_id
|
||
) # 目标频率:e.g. 1条/分钟
|
||
target_replies_in_window = target_replies_per_min * evaluation_minutes # 10分钟内的目标回复数
|
||
|
||
if target_replies_in_window <= 0:
|
||
logger.debug(f"[{self.stream_name}] 目标回复频率为0或负数,不调整意愿放大器。")
|
||
return
|
||
|
||
# --- 2. 获取近期统计数据 ---
|
||
stats_10_min = get_recent_message_stats(minutes=evaluation_minutes, chat_id=self.stream_id)
|
||
bot_reply_count_10_min = stats_10_min["bot_reply_count"]
|
||
|
||
# --- 3. 计算新的意愿放大器 (willing_amplifier) ---
|
||
# 基于回复数在 [0, target*2] 区间内进行分段线性映射
|
||
if bot_reply_count_10_min <= target_replies_in_window:
|
||
# 在 [0, 目标数] 区间,意愿从 5.0 线性下降到 1.0
|
||
new_amplifier = 5.0 + (bot_reply_count_10_min - 0) * (1.0 - 5.0) / (target_replies_in_window - 0)
|
||
elif bot_reply_count_10_min <= target_replies_in_window * 2:
|
||
# 在 [目标数, 目标数*2] 区间,意愿从 1.0 线性下降到 0.2
|
||
over_target_cap = target_replies_in_window * 2
|
||
new_amplifier = 1.0 + (bot_reply_count_10_min - target_replies_in_window) * (0.2 - 1.0) / (
|
||
over_target_cap - target_replies_in_window
|
||
)
|
||
else:
|
||
# 超过目标数2倍,直接设为最小值
|
||
new_amplifier = 0.2
|
||
|
||
# --- 4. 检查是否需要抑制增益 ---
|
||
# "如果邻近5分钟内,回复数量 > 频率/2,就不再进行增益"
|
||
suppress_gain = False
|
||
if new_amplifier > self.willing_amplifier: # 仅在计算结果为增益时检查
|
||
suppression_minutes = 5.0
|
||
# 5分钟内目标回复数的一半
|
||
suppression_threshold = (target_replies_per_min / 2) * suppression_minutes # e.g., (1/2)*5 = 2.5
|
||
stats_5_min = get_recent_message_stats(minutes=suppression_minutes, chat_id=self.stream_id)
|
||
bot_reply_count_5_min = stats_5_min["bot_reply_count"]
|
||
|
||
if bot_reply_count_5_min > suppression_threshold:
|
||
suppress_gain = True
|
||
|
||
# --- 5. 更新意愿放大器 ---
|
||
if suppress_gain:
|
||
logger.debug(
|
||
f"[{self.stream_name}] 回复增益被抑制。最近5分钟内回复数 ({bot_reply_count_5_min}) "
|
||
f"> 阈值 ({suppression_threshold:.1f})。意愿放大器保持在 {self.willing_amplifier:.2f}"
|
||
)
|
||
# 不做任何改动
|
||
else:
|
||
# 限制最终值在 [0.2, 5.0] 范围内
|
||
self.willing_amplifier = max(0.2, min(5.0, new_amplifier))
|
||
logger.debug(
|
||
f"[{self.stream_name}] 调整回复意愿。10分钟内回复: {bot_reply_count_10_min} (目标: {target_replies_in_window:.0f}) -> "
|
||
f"意愿放大器更新为: {self.willing_amplifier:.2f}"
|
||
)
|
||
|
||
def _get_sender_name(self, message: MessageRecv) -> str:
|
||
"""获取发送者名称,用于planner"""
|
||
if message.chat_stream.user_info:
|
||
user_info = message.chat_stream.user_info
|
||
if user_info.user_cardname and user_info.user_nickname:
|
||
return f"[{user_info.user_nickname}][群昵称:{user_info.user_cardname}]"
|
||
elif user_info.user_nickname:
|
||
return f"[{user_info.user_nickname}]"
|
||
else:
|
||
return f"用户({user_info.user_id})"
|
||
return "某人"
|
||
|
||
async def _execute_action(
|
||
self, action_type: str, action_data: dict, message: MessageRecv, thinking_id: str
|
||
) -> Optional[bool]:
|
||
"""执行具体的动作,只返回执行成功与否"""
|
||
try:
|
||
# 创建动作处理器实例
|
||
action_handler = self.action_manager.create_action(
|
||
action_name=action_type,
|
||
action_data=action_data,
|
||
reasoning=action_data.get("reasoning", ""),
|
||
cycle_timers={}, # normal_chat使用空的cycle_timers
|
||
thinking_id=thinking_id,
|
||
chat_stream=self.chat_stream,
|
||
log_prefix=self.stream_name,
|
||
shutting_down=self._disabled,
|
||
)
|
||
|
||
if action_handler:
|
||
# 执行动作
|
||
result = await action_handler.handle_action()
|
||
success = False
|
||
|
||
if result and isinstance(result, tuple) and len(result) >= 2:
|
||
# handle_action返回 (success: bool, message: str)
|
||
success = result[0]
|
||
elif result:
|
||
# 如果返回了其他结果,假设成功
|
||
success = True
|
||
|
||
return success
|
||
|
||
except Exception as e:
|
||
logger.error(f"[{self.stream_name}] 执行动作 {action_type} 失败: {e}")
|
||
|
||
return False
|
||
|
||
def set_planner_enabled(self, enabled: bool):
|
||
"""设置是否启用planner"""
|
||
self.enable_planner = enabled
|
||
logger.info(f"[{self.stream_name}] Planner {'启用' if enabled else '禁用'}")
|
||
|
||
def get_action_manager(self) -> ActionManager:
|
||
"""获取动作管理器实例"""
|
||
return self.action_manager
|
||
|
||
async def _check_relation_building_conditions(self):
|
||
"""检查person_engaged_cache中是否有满足关系构建条件的用户"""
|
||
users_to_build_relationship = []
|
||
|
||
for person_id, segments in list(self.person_engaged_cache.items()):
|
||
total_message_count = self._get_total_message_count(person_id)
|
||
if total_message_count >= 45:
|
||
users_to_build_relationship.append(person_id)
|
||
logger.info(
|
||
f"[{self.stream_name}] 用户 {person_id} 满足关系构建条件,总消息数:{total_message_count},消息段数:{len(segments)}"
|
||
)
|
||
elif total_message_count > 0:
|
||
# 记录进度信息
|
||
logger.debug(
|
||
f"[{self.stream_name}] 用户 {person_id} 进度:{total_message_count}/45 条消息,{len(segments)} 个消息段"
|
||
)
|
||
|
||
# 为满足条件的用户构建关系
|
||
for person_id in users_to_build_relationship:
|
||
segments = self.person_engaged_cache[person_id]
|
||
# 异步执行关系构建
|
||
asyncio.create_task(self._build_relation_for_person_segments(person_id, segments))
|
||
# 移除已处理的用户缓存
|
||
del self.person_engaged_cache[person_id]
|
||
self._save_cache()
|
||
logger.info(f"[{self.stream_name}] 用户 {person_id} 关系构建已启动,缓存已清理")
|
||
|
||
async def _build_relation_for_person_segments(self, person_id: str, segments: List[Dict[str, any]]):
|
||
"""基于消息段更新用户印象,统一使用focus chat的构建方式"""
|
||
if not segments:
|
||
return
|
||
|
||
logger.debug(f"[{self.stream_name}] 开始为 {person_id} 基于 {len(segments)} 个消息段更新印象")
|
||
try:
|
||
processed_messages = []
|
||
|
||
for i, segment in enumerate(segments):
|
||
start_time = segment["start_time"]
|
||
end_time = segment["end_time"]
|
||
segment["message_count"]
|
||
start_date = time.strftime("%Y-%m-%d %H:%M", time.localtime(start_time))
|
||
|
||
# 获取该段的消息(包含边界)
|
||
segment_messages = get_raw_msg_by_timestamp_with_chat_inclusive(self.stream_id, start_time, end_time)
|
||
logger.debug(
|
||
f"[{self.stream_name}] 消息段 {i + 1}: {start_date} - {time.strftime('%Y-%m-%d %H:%M', time.localtime(end_time))}, 消息数: {len(segment_messages)}"
|
||
)
|
||
|
||
if segment_messages:
|
||
# 如果不是第一个消息段,在消息列表前添加间隔标识
|
||
if i > 0:
|
||
# 创建一个特殊的间隔消息
|
||
gap_message = {
|
||
"time": start_time - 0.1, # 稍微早于段开始时间
|
||
"user_id": "system",
|
||
"user_platform": "system",
|
||
"user_nickname": "系统",
|
||
"user_cardname": "",
|
||
"display_message": f"...(中间省略一些消息){start_date} 之后的消息如下...",
|
||
"is_action_record": True,
|
||
"chat_info_platform": segment_messages[0].get("chat_info_platform", ""),
|
||
"chat_id": self.stream_id,
|
||
}
|
||
processed_messages.append(gap_message)
|
||
|
||
# 添加该段的所有消息
|
||
processed_messages.extend(segment_messages)
|
||
|
||
if processed_messages:
|
||
# 按时间排序所有消息(包括间隔标识)
|
||
processed_messages.sort(key=lambda x: x["time"])
|
||
|
||
logger.debug(
|
||
f"[{self.stream_name}] 为 {person_id} 获取到总共 {len(processed_messages)} 条消息(包含间隔标识)用于印象更新"
|
||
)
|
||
relationship_manager = get_relationship_manager()
|
||
|
||
# 调用统一的更新方法
|
||
await relationship_manager.update_person_impression(
|
||
person_id=person_id, timestamp=time.time(), bot_engaged_messages=processed_messages
|
||
)
|
||
else:
|
||
logger.debug(f"[{self.stream_name}] 没有找到 {person_id} 的消息段对应的消息,不更新印象")
|
||
|
||
except Exception as e:
|
||
logger.error(f"[{self.stream_name}] 为 {person_id} 更新印象时发生错误: {e}")
|
||
logger.error(traceback.format_exc())
|
||
|
||
async def _check_should_switch_to_focus(self) -> bool:
|
||
"""
|
||
检查是否满足切换到focus模式的条件
|
||
|
||
Returns:
|
||
bool: 是否应该切换到focus模式
|
||
"""
|
||
# 检查思考消息堆积情况
|
||
container = await message_manager.get_container(self.stream_id)
|
||
if container:
|
||
thinking_count = sum(1 for msg in container.messages if isinstance(msg, MessageThinking))
|
||
if thinking_count >= 4 * global_config.chat.auto_focus_threshold: # 如果堆积超过阈值条思考消息
|
||
logger.debug(f"[{self.stream_name}] 检测到思考消息堆积({thinking_count}条),切换到focus模式")
|
||
return True
|
||
|
||
if not self.recent_replies:
|
||
return False
|
||
|
||
current_time = time.time()
|
||
time_threshold = 120 / global_config.chat.auto_focus_threshold
|
||
reply_threshold = 6 * global_config.chat.auto_focus_threshold
|
||
|
||
one_minute_ago = current_time - time_threshold
|
||
|
||
# 统计指定时间内的回复数量
|
||
recent_reply_count = sum(1 for reply in self.recent_replies if reply["time"] > one_minute_ago)
|
||
|
||
should_switch = recent_reply_count > reply_threshold
|
||
if should_switch:
|
||
logger.debug(
|
||
f"[{self.stream_name}] 检测到{time_threshold:.0f}秒内回复数量({recent_reply_count})大于{reply_threshold},满足切换到focus模式条件"
|
||
)
|
||
|
||
return should_switch
|