import asyncio import time from random import random from typing import List, Dict, Optional import os import pickle from maim_message import UserInfo, Seg from src.common.logger import get_logger from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager from src.chat.utils.timer_calculator import Timer from src.chat.utils.prompt_builder import global_prompt_manager from ..message_receive.message import MessageSending, MessageRecv, MessageThinking, MessageSet from src.chat.message_receive.message_sender import message_manager from src.chat.normal_chat.willing.willing_manager import get_willing_manager from src.chat.normal_chat.normal_chat_utils import get_recent_message_stats from src.config.config import global_config from src.chat.focus_chat.planners.action_manager import ActionManager from src.person_info.person_info import PersonInfoManager from src.person_info.relationship_manager import get_relationship_manager from src.chat.utils.chat_message_builder import ( get_raw_msg_by_timestamp_with_chat, get_raw_msg_by_timestamp_with_chat_inclusive, get_raw_msg_before_timestamp_with_chat, num_new_messages_since, ) from .priority_manager import PriorityManager import traceback from .normal_chat_generator import NormalChatGenerator from src.chat.normal_chat.normal_chat_expressor import NormalChatExpressor from src.chat.normal_chat.normal_chat_planner import NormalChatPlanner from src.chat.normal_chat.normal_chat_action_modifier import NormalChatActionModifier from src.chat.heart_flow.utils_chat import get_chat_type_and_target_info from src.manager.mood_manager import mood_manager willing_manager = get_willing_manager() logger = get_logger("normal_chat") # 消息段清理配置 SEGMENT_CLEANUP_CONFIG = { "enable_cleanup": True, # 是否启用清理 "max_segment_age_days": 7, # 消息段最大保存天数 "max_segments_per_user": 10, # 每用户最大消息段数 "cleanup_interval_hours": 1, # 清理间隔(小时) } class NormalChat: """ 普通聊天处理类,负责处理非核心对话的聊天逻辑。 每个聊天(私聊或群聊)都会有一个独立的NormalChat实例。 """ def __init__(self, chat_stream: ChatStream, interest_dict: dict = None, on_switch_to_focus_callback=None): """ 初始化NormalChat实例。 Args: chat_stream (ChatStream): 聊天流对象,包含与特定聊天相关的所有信息。 """ self.chat_stream = chat_stream self.stream_id = chat_stream.stream_id self.stream_name = get_chat_manager().get_stream_name(self.stream_id) or self.stream_id # 初始化Normal Chat专用表达器 self.expressor = NormalChatExpressor(self.chat_stream) # Interest dict self.interest_dict = interest_dict self.is_group_chat, self.chat_target_info = get_chat_type_and_target_info(self.stream_id) self.willing_amplifier = 1 self.start_time = time.time() # Other sync initializations self.gpt = NormalChatGenerator() self.mood_manager = mood_manager self.start_time = time.time() self._initialized = False # Track initialization status # Planner相关初始化 self.action_manager = ActionManager() self.planner = NormalChatPlanner(self.stream_name, self.action_manager) self.action_modifier = NormalChatActionModifier(self.action_manager, self.stream_id, self.stream_name) self.enable_planner = global_config.normal_chat.enable_planner # 从配置中读取是否启用planner # 记录最近的回复内容,每项包含: {time, user_message, response, is_mentioned, is_reference_reply} self.recent_replies = [] self.max_replies_history = 20 # 最多保存最近20条回复记录 # 新的消息段缓存结构: # {person_id: [{"start_time": float, "end_time": float, "last_msg_time": float, "message_count": int}, ...]} self.person_engaged_cache: Dict[str, List[Dict[str, any]]] = {} # 持久化存储文件路径 self.cache_file_path = os.path.join("data", "relationship", f"relationship_cache_{self.stream_id}.pkl") # 最后处理的消息时间,避免重复处理相同消息 self.last_processed_message_time = 0.0 # 最后清理时间,用于定期清理老消息段 self.last_cleanup_time = 0.0 # 添加回调函数,用于在满足条件时通知切换到focus_chat模式 self.on_switch_to_focus_callback = on_switch_to_focus_callback self._disabled = False # 增加停用标志 # 加载持久化的缓存 self._load_cache() logger.debug(f"[{self.stream_name}] NormalChat 初始化完成 (异步部分)。") self.action_type: Optional[str] = None # 当前动作类型 self.is_parallel_action: bool = False # 是否是可并行动作 # 任务管理 self._chat_task: Optional[asyncio.Task] = None self._disabled = False # 停用标志 self.on_switch_to_focus_callback = on_switch_to_focus_callback # 新增:回复模式和优先级管理器 self.reply_mode = self.chat_stream.context.get_priority_mode() if self.reply_mode == "priority": interest_dict = interest_dict or {} self.priority_manager = PriorityManager( interest_dict=interest_dict, normal_queue_max_size=5, ) else: self.priority_manager = None async def disable(self): """停用 NormalChat 实例,停止所有后台任务""" self._disabled = True if self._chat_task and not self._chat_task.done(): self._chat_task.cancel() if self.reply_mode == "priority" and self._priority_chat_task and not self._priority_chat_task.done(): self._priority_chat_task.cancel() logger.info(f"[{self.stream_name}] NormalChat 已停用。") # ================================ # 缓存管理模块 # 负责持久化存储、状态管理、缓存读写 # ================================ def _load_cache(self): """从文件加载持久化的缓存""" if os.path.exists(self.cache_file_path): try: with open(self.cache_file_path, "rb") as f: cache_data = pickle.load(f) # 新格式:包含额外信息的缓存 self.person_engaged_cache = cache_data.get("person_engaged_cache", {}) self.last_processed_message_time = cache_data.get("last_processed_message_time", 0.0) self.last_cleanup_time = cache_data.get("last_cleanup_time", 0.0) logger.info( f"[{self.stream_name}] 成功加载关系缓存,包含 {len(self.person_engaged_cache)} 个用户,最后处理时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_processed_message_time)) if self.last_processed_message_time > 0 else '未设置'}" ) except Exception as e: logger.error(f"[{self.stream_name}] 加载关系缓存失败: {e}") self.person_engaged_cache = {} self.last_processed_message_time = 0.0 else: logger.info(f"[{self.stream_name}] 关系缓存文件不存在,使用空缓存") def _save_cache(self): """保存缓存到文件""" try: os.makedirs(os.path.dirname(self.cache_file_path), exist_ok=True) cache_data = { "person_engaged_cache": self.person_engaged_cache, "last_processed_message_time": self.last_processed_message_time, "last_cleanup_time": self.last_cleanup_time, } with open(self.cache_file_path, "wb") as f: pickle.dump(cache_data, f) logger.debug(f"[{self.stream_name}] 成功保存关系缓存") except Exception as e: logger.error(f"[{self.stream_name}] 保存关系缓存失败: {e}") # ================================ # 消息段管理模块 # 负责跟踪用户消息活动、管理消息段、清理过期数据 # ================================ def _update_message_segments(self, person_id: str, message_time: float): """更新用户的消息段 Args: person_id: 用户ID message_time: 消息时间戳 """ if person_id not in self.person_engaged_cache: self.person_engaged_cache[person_id] = [] segments = self.person_engaged_cache[person_id] current_time = time.time() # 获取该消息前5条消息的时间作为潜在的开始时间 before_messages = get_raw_msg_before_timestamp_with_chat(self.stream_id, message_time, limit=5) if before_messages: # 由于get_raw_msg_before_timestamp_with_chat返回按时间升序排序的消息,最后一个是最接近message_time的 # 我们需要第一个消息作为开始时间,但应该确保至少包含5条消息或该用户之前的消息 potential_start_time = before_messages[0]["time"] else: # 如果没有前面的消息,就从当前消息开始 potential_start_time = message_time # 如果没有现有消息段,创建新的 if not segments: new_segment = { "start_time": potential_start_time, "end_time": message_time, "last_msg_time": message_time, "message_count": self._count_messages_in_timerange(potential_start_time, message_time), } segments.append(new_segment) logger.debug( f"[{self.stream_name}] 为用户 {person_id} 创建新消息段: 时间范围 {time.strftime('%H:%M:%S', time.localtime(potential_start_time))} - {time.strftime('%H:%M:%S', time.localtime(message_time))}, 消息数: {new_segment['message_count']}" ) self._save_cache() return # 获取最后一个消息段 last_segment = segments[-1] # 计算从最后一条消息到当前消息之间的消息数量(不包含边界) messages_between = self._count_messages_between(last_segment["last_msg_time"], message_time) if messages_between <= 10: # 在10条消息内,延伸当前消息段 last_segment["end_time"] = message_time last_segment["last_msg_time"] = message_time # 重新计算整个消息段的消息数量 last_segment["message_count"] = self._count_messages_in_timerange( last_segment["start_time"], last_segment["end_time"] ) logger.debug(f"[{self.stream_name}] 延伸用户 {person_id} 的消息段: {last_segment}") else: # 超过10条消息,结束当前消息段并创建新的 # 结束当前消息段:延伸到原消息段最后一条消息后5条消息的时间 after_messages = get_raw_msg_by_timestamp_with_chat( self.stream_id, last_segment["last_msg_time"], current_time, limit=5, limit_mode="earliest" ) if after_messages and len(after_messages) >= 5: # 如果有足够的后续消息,使用第5条消息的时间作为结束时间 last_segment["end_time"] = after_messages[4]["time"] else: # 如果没有足够的后续消息,保持原有的结束时间 pass # 重新计算当前消息段的消息数量 last_segment["message_count"] = self._count_messages_in_timerange( last_segment["start_time"], last_segment["end_time"] ) # 创建新的消息段 new_segment = { "start_time": potential_start_time, "end_time": message_time, "last_msg_time": message_time, "message_count": self._count_messages_in_timerange(potential_start_time, message_time), } segments.append(new_segment) logger.debug(f"[{self.stream_name}] 为用户 {person_id} 创建新消息段(超过10条消息间隔): {new_segment}") self._save_cache() def _count_messages_in_timerange(self, start_time: float, end_time: float) -> int: """计算指定时间范围内的消息数量(包含边界)""" messages = get_raw_msg_by_timestamp_with_chat_inclusive(self.stream_id, start_time, end_time) return len(messages) def _count_messages_between(self, start_time: float, end_time: float) -> int: """计算两个时间点之间的消息数量(不包含边界),用于间隔检查""" return num_new_messages_since(self.stream_id, start_time, end_time) def _get_total_message_count(self, person_id: str) -> int: """获取用户所有消息段的总消息数量""" if person_id not in self.person_engaged_cache: return 0 total_count = 0 for segment in self.person_engaged_cache[person_id]: total_count += segment["message_count"] return total_count def _cleanup_old_segments(self) -> bool: """清理老旧的消息段 Returns: bool: 是否执行了清理操作 """ if not SEGMENT_CLEANUP_CONFIG["enable_cleanup"]: return False current_time = time.time() # 检查是否需要执行清理(基于时间间隔) cleanup_interval_seconds = SEGMENT_CLEANUP_CONFIG["cleanup_interval_hours"] * 3600 if current_time - self.last_cleanup_time < cleanup_interval_seconds: return False logger.info(f"[{self.stream_name}] 开始执行老消息段清理...") cleanup_stats = { "users_cleaned": 0, "segments_removed": 0, "total_segments_before": 0, "total_segments_after": 0, } max_age_seconds = SEGMENT_CLEANUP_CONFIG["max_segment_age_days"] * 24 * 3600 max_segments_per_user = SEGMENT_CLEANUP_CONFIG["max_segments_per_user"] users_to_remove = [] for person_id, segments in self.person_engaged_cache.items(): cleanup_stats["total_segments_before"] += len(segments) original_segment_count = len(segments) # 1. 按时间清理:移除过期的消息段 segments_after_age_cleanup = [] for segment in segments: segment_age = current_time - segment["end_time"] if segment_age <= max_age_seconds: segments_after_age_cleanup.append(segment) else: cleanup_stats["segments_removed"] += 1 logger.debug( f"[{self.stream_name}] 移除用户 {person_id} 的过期消息段: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['start_time']))} - {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(segment['end_time']))}" ) # 2. 按数量清理:如果消息段数量仍然过多,保留最新的 if len(segments_after_age_cleanup) > max_segments_per_user: # 按end_time排序,保留最新的 segments_after_age_cleanup.sort(key=lambda x: x["end_time"], reverse=True) segments_removed_count = len(segments_after_age_cleanup) - max_segments_per_user cleanup_stats["segments_removed"] += segments_removed_count segments_after_age_cleanup = segments_after_age_cleanup[:max_segments_per_user] logger.debug( f"[{self.stream_name}] 用户 {person_id} 消息段数量过多,移除 {segments_removed_count} 个最老的消息段" ) # 使用清理后的消息段 # 更新缓存 if len(segments_after_age_cleanup) == 0: # 如果没有剩余消息段,标记用户为待移除 users_to_remove.append(person_id) else: self.person_engaged_cache[person_id] = segments_after_age_cleanup cleanup_stats["total_segments_after"] += len(segments_after_age_cleanup) if original_segment_count != len(segments_after_age_cleanup): cleanup_stats["users_cleaned"] += 1 # 移除没有消息段的用户 for person_id in users_to_remove: del self.person_engaged_cache[person_id] logger.debug(f"[{self.stream_name}] 移除用户 {person_id}:没有剩余消息段") # 更新最后清理时间 self.last_cleanup_time = current_time # 保存缓存 if cleanup_stats["segments_removed"] > 0 or len(users_to_remove) > 0: self._save_cache() logger.info( f"[{self.stream_name}] 清理完成 - 影响用户: {cleanup_stats['users_cleaned']}, 移除消息段: {cleanup_stats['segments_removed']}, 移除用户: {len(users_to_remove)}" ) logger.info( f"[{self.stream_name}] 消息段统计 - 清理前: {cleanup_stats['total_segments_before']}, 清理后: {cleanup_stats['total_segments_after']}" ) else: logger.debug(f"[{self.stream_name}] 清理完成 - 无需清理任何内容") return cleanup_stats["segments_removed"] > 0 or len(users_to_remove) > 0 def get_cache_status(self) -> str: """获取缓存状态信息,用于调试和监控""" if not self.person_engaged_cache: return f"[{self.stream_name}] 关系缓存为空" status_lines = [f"[{self.stream_name}] 关系缓存状态:"] status_lines.append( f"最后处理消息时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_processed_message_time)) if self.last_processed_message_time > 0 else '未设置'}" ) status_lines.append( f"最后清理时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(self.last_cleanup_time)) if self.last_cleanup_time > 0 else '未执行'}" ) status_lines.append(f"总用户数:{len(self.person_engaged_cache)}") status_lines.append( f"清理配置:{'启用' if SEGMENT_CLEANUP_CONFIG['enable_cleanup'] else '禁用'} (最大保存{SEGMENT_CLEANUP_CONFIG['max_segment_age_days']}天, 每用户最多{SEGMENT_CLEANUP_CONFIG['max_segments_per_user']}段)" ) status_lines.append("") for person_id, segments in self.person_engaged_cache.items(): total_count = self._get_total_message_count(person_id) status_lines.append(f"用户 {person_id}:") status_lines.append(f" 总消息数:{total_count} ({total_count}/45)") status_lines.append(f" 消息段数:{len(segments)}") for i, segment in enumerate(segments): start_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(segment["start_time"])) end_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(segment["end_time"])) last_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(segment["last_msg_time"])) status_lines.append( f" 段{i + 1}: {start_str} -> {end_str} (最后消息: {last_str}, 消息数: {segment['message_count']})" ) status_lines.append("") return "\n".join(status_lines) def _update_user_message_segments(self, message: MessageRecv): """更新用户消息段信息""" time.time() user_id = message.message_info.user_info.user_id platform = message.message_info.platform msg_time = message.message_info.time # 跳过机器人自己的消息 if user_id == global_config.bot.qq_account: return # 只处理新消息(避免重复处理) if msg_time <= self.last_processed_message_time: return person_id = PersonInfoManager.get_person_id(platform, user_id) self._update_message_segments(person_id, msg_time) # 更新最后处理时间 self.last_processed_message_time = max(self.last_processed_message_time, msg_time) logger.debug( f"[{self.stream_name}] 更新用户 {person_id} 的消息段,消息时间:{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(msg_time))}" ) async def _priority_chat_loop_add_message(self): while not self._disabled: try: ids = list(self.interest_dict.keys()) for msg_id in ids: message, interest_value, _ = self.interest_dict[msg_id] if not self._disabled: # 更新消息段信息 self._update_user_message_segments(message) # 添加消息到优先级管理器 if self.priority_manager: self.priority_manager.add_message(message, interest_value) self.interest_dict.pop(msg_id, None) except Exception: logger.error( f"[{self.stream_name}] 优先级聊天循环添加消息时出现错误: {traceback.format_exc()}", exc_info=True ) print(traceback.format_exc()) # 出现错误时,等待一段时间再重试 raise await asyncio.sleep(0.1) async def _priority_chat_loop(self): """ 使用优先级队列的消息处理循环。 """ while not self._disabled: try: if not self.priority_manager.is_empty(): # 获取最高优先级的消息 message = self.priority_manager.get_highest_priority_message() if message: logger.info( f"[{self.stream_name}] 从队列中取出消息进行处理: User {message.message_info.user_info.user_id}, Time: {time.strftime('%H:%M:%S', time.localtime(message.message_info.time))}" ) # 执行定期清理 self._cleanup_old_segments() # 更新消息段信息 self._update_user_message_segments(message) # 检查是否有用户满足关系构建条件 asyncio.create_task(self._check_relation_building_conditions()) await self.reply_one_message(message) # 等待一段时间再检查队列 await asyncio.sleep(1) except asyncio.CancelledError: logger.info(f"[{self.stream_name}] 优先级聊天循环被取消。") break except Exception: logger.error(f"[{self.stream_name}] 优先级聊天循环出现错误: {traceback.format_exc()}", exc_info=True) # 出现错误时,等待更长时间避免频繁报错 await asyncio.sleep(10) # 改为实例方法 async def _create_thinking_message(self, message: MessageRecv, timestamp: Optional[float] = None) -> str: """创建思考消息""" messageinfo = message.message_info bot_user_info = UserInfo( user_id=global_config.bot.qq_account, user_nickname=global_config.bot.nickname, platform=messageinfo.platform, ) thinking_time_point = round(time.time(), 2) thinking_id = "tid" + str(thinking_time_point) thinking_message = MessageThinking( message_id=thinking_id, chat_stream=self.chat_stream, bot_user_info=bot_user_info, reply=message, thinking_start_time=thinking_time_point, timestamp=timestamp if timestamp is not None else None, ) await message_manager.add_message(thinking_message) return thinking_id # 改为实例方法 async def _add_messages_to_manager( self, message: MessageRecv, response_set: List[str], thinking_id ) -> Optional[MessageSending]: """发送回复消息""" container = await message_manager.get_container(self.stream_id) # 使用 self.stream_id thinking_message = None for msg in container.messages[:]: if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id: thinking_message = msg container.messages.remove(msg) break if not thinking_message: logger.warning(f"[{self.stream_name}] 未找到对应的思考消息 {thinking_id},可能已超时被移除") return None thinking_start_time = thinking_message.thinking_start_time message_set = MessageSet(self.chat_stream, thinking_id) # 使用 self.chat_stream mark_head = False first_bot_msg = None for msg in response_set: if global_config.experimental.debug_show_chat_mode: msg += "ⁿ" message_segment = Seg(type="text", data=msg) bot_message = MessageSending( message_id=thinking_id, chat_stream=self.chat_stream, # 使用 self.chat_stream bot_user_info=UserInfo( user_id=global_config.bot.qq_account, user_nickname=global_config.bot.nickname, platform=message.message_info.platform, ), sender_info=message.message_info.user_info, message_segment=message_segment, reply=message, is_head=not mark_head, is_emoji=False, thinking_start_time=thinking_start_time, apply_set_reply_logic=True, ) if not mark_head: mark_head = True first_bot_msg = bot_message message_set.add_message(bot_message) await message_manager.add_message(message_set) return first_bot_msg async def _reply_interested_message(self) -> None: """ 后台任务方法,轮询当前实例关联chat的兴趣消息 通常由start_monitoring_interest()启动 """ logger.debug(f"[{self.stream_name}] 兴趣监控任务开始") try: while True: # 第一层检查:立即检查取消和停用状态 if self._disabled: logger.info(f"[{self.stream_name}] 检测到停用标志,退出兴趣监控") break # 检查当前任务是否已被取消 current_task = asyncio.current_task() if current_task and current_task.cancelled(): logger.info(f"[{self.stream_name}] 当前任务已被取消,退出") break try: # 短暂等待,让出控制权 await asyncio.sleep(0.1) # 第二层检查:睡眠后再次检查状态 if self._disabled: logger.info(f"[{self.stream_name}] 睡眠后检测到停用标志,退出") break # 获取待处理消息 items_to_process = list(self.interest_dict.items()) if not items_to_process: # 没有消息时继续下一轮循环 continue # 第三层检查:在处理消息前最后检查一次 if self._disabled: logger.info(f"[{self.stream_name}] 处理消息前检测到停用标志,退出") break # 使用异步上下文管理器处理消息 try: async with global_prompt_manager.async_message_scope( self.chat_stream.context.get_template_name() ): # 在上下文内部再次检查取消状态 if self._disabled: logger.info(f"[{self.stream_name}] 在处理上下文中检测到停止信号,退出") break # 并行处理兴趣消息 async def process_single_message(msg_id, message, interest_value, is_mentioned): """处理单个兴趣消息""" try: # 在处理每个消息前检查停止状态 if self._disabled: logger.debug(f"[{self.stream_name}] 处理消息时检测到停用,跳过消息 {msg_id}") return # 处理消息 self.adjust_reply_frequency() await self.normal_response( message=message, is_mentioned=is_mentioned, interested_rate=interest_value * self.willing_amplifier, ) except asyncio.CancelledError: logger.debug(f"[{self.stream_name}] 处理消息 {msg_id} 时被取消") raise # 重新抛出取消异常 except Exception as e: logger.error(f"[{self.stream_name}] 处理兴趣消息{msg_id}时出错: {e}") # 不打印完整traceback,避免日志污染 finally: # 无论如何都要清理消息 self.interest_dict.pop(msg_id, None) # 创建并行任务列表 coroutines = [] for msg_id, (message, interest_value, is_mentioned) in items_to_process: coroutine = process_single_message(msg_id, message, interest_value, is_mentioned) coroutines.append(coroutine) # 并行执行所有任务,限制并发数量避免资源过度消耗 if coroutines: # 使用信号量控制并发数,最多同时处理5个消息 semaphore = asyncio.Semaphore(5) async def limited_process(coroutine, sem): async with sem: await coroutine limited_tasks = [limited_process(coroutine, semaphore) for coroutine in coroutines] await asyncio.gather(*limited_tasks, return_exceptions=True) except asyncio.CancelledError: logger.info(f"[{self.stream_name}] 处理上下文时任务被取消") break except Exception as e: logger.error(f"[{self.stream_name}] 处理上下文时出错: {e}") # 出错后短暂等待,避免快速重试 await asyncio.sleep(0.5) except asyncio.CancelledError: logger.info(f"[{self.stream_name}] 主循环中任务被取消") break except Exception as e: logger.error(f"[{self.stream_name}] 主循环出错: {e}") # 出错后等待一秒再继续 await asyncio.sleep(1.0) except asyncio.CancelledError: logger.info(f"[{self.stream_name}] 兴趣监控任务被取消") except Exception as e: logger.error(f"[{self.stream_name}] 兴趣监控任务严重错误: {e}") finally: logger.debug(f"[{self.stream_name}] 兴趣监控任务结束") # 改为实例方法, 移除 chat 参数 async def normal_response(self, message: MessageRecv, is_mentioned: bool, interested_rate: float) -> None: """ 处理接收到的消息。 根据回复模式,决定是立即处理还是放入优先级队列。 """ if self._disabled: return # 根据回复模式决定行为 if self.reply_mode == "priority": # 优先模式下,所有消息都进入管理器 if self.priority_manager: self.priority_manager.add_message(message) return # --- 以下为原有的 "兴趣" 模式逻辑 --- await self._process_message(message, is_mentioned, interested_rate) async def _process_message(self, message: MessageRecv, is_mentioned: bool, interested_rate: float) -> None: """ 实际处理单条消息的逻辑,包括意愿判断、回复生成、动作执行等。 """ if self._disabled: return # 新增:在auto模式下检查是否需要直接切换到focus模式 if global_config.chat.chat_mode == "auto": if await self._check_should_switch_to_focus(): logger.info(f"[{self.stream_name}] 检测到切换到focus聊天模式的条件,直接执行切换") if self.on_switch_to_focus_callback: await self.on_switch_to_focus_callback() return else: logger.warning(f"[{self.stream_name}] 没有设置切换到focus聊天模式的回调函数,无法执行切换") # 执行定期清理 self._cleanup_old_segments() # 更新消息段信息 self._update_user_message_segments(message) # 检查是否有用户满足关系构建条件 asyncio.create_task(self._check_relation_building_conditions()) timing_results = {} reply_probability = ( 1.0 if is_mentioned and global_config.normal_chat.mentioned_bot_inevitable_reply else 0.0 ) # 如果被提及,且开启了提及必回复,则基础概率为1,否则需要意愿判断 # 意愿管理器:设置当前message信息 willing_manager.setup(message, self.chat_stream, is_mentioned, interested_rate) # 获取回复概率 # is_willing = False # 仅在未被提及或基础概率不为1时查询意愿概率 if reply_probability < 1: # 简化逻辑,如果未提及 (reply_probability 为 0),则获取意愿概率 # is_willing = True reply_probability = await willing_manager.get_reply_probability(message.message_info.message_id) if message.message_info.additional_config: if "maimcore_reply_probability_gain" in message.message_info.additional_config.keys(): reply_probability += message.message_info.additional_config["maimcore_reply_probability_gain"] reply_probability = min(max(reply_probability, 0), 1) # 确保概率在 0-1 之间 # 打印消息信息 mes_name = self.chat_stream.group_info.group_name if self.chat_stream.group_info else "私聊" # current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time)) # 使用 self.stream_id # willing_log = f"[激活值:{await willing_manager.get_willing(self.stream_id):.2f}]" if is_willing else "" logger.info( f"[{mes_name}]" f"{message.message_info.user_info.user_nickname}:" # 使用 self.chat_stream f"{message.processed_plain_text}[兴趣:{interested_rate:.2f}][回复概率:{reply_probability * 100:.1f}%]" ) do_reply = False response_set = None # 初始化 response_set if random() < reply_probability: with Timer("获取回复", timing_results): await willing_manager.before_generate_reply_handle(message.message_info.message_id) do_reply = await self.reply_one_message(message) response_set = do_reply if do_reply else None # 输出性能计时结果 if do_reply and response_set: # 确保 response_set 不是 None timing_str = " | ".join([f"{step}: {duration:.2f}秒" for step, duration in timing_results.items()]) trigger_msg = message.processed_plain_text response_msg = " ".join(response_set) logger.info( f"[{self.stream_name}]回复消息: {trigger_msg[:30]}... | 回复内容: {response_msg[:30]}... | 计时: {timing_str}" ) await willing_manager.after_generate_reply_handle(message.message_info.message_id) elif not do_reply: # 不回复处理 await willing_manager.not_reply_handle(message.message_info.message_id) # 意愿管理器:注销当前message信息 (无论是否回复,只要处理过就删除) willing_manager.delete(message.message_info.message_id) async def reply_one_message(self, message: MessageRecv) -> None: # 回复前处理 thinking_id = await self._create_thinking_message(message) # 如果启用planner,预先修改可用actions(避免在并行任务中重复调用) available_actions = None if self.enable_planner: try: await self.action_modifier.modify_actions_for_normal_chat( self.chat_stream, self.recent_replies, message.processed_plain_text ) available_actions = self.action_manager.get_using_actions_for_mode("normal") except Exception as e: logger.warning(f"[{self.stream_name}] 获取available_actions失败: {e}") available_actions = None # 定义并行执行的任务 async def generate_normal_response(): """生成普通回复""" try: return await self.gpt.generate_response( message=message, available_actions=available_actions, ) except Exception as e: logger.error(f"[{self.stream_name}] 回复生成出现错误:{str(e)} {traceback.format_exc()}") return None async def plan_and_execute_actions(): """规划和执行额外动作""" if not self.enable_planner: logger.debug(f"[{self.stream_name}] Planner未启用,跳过动作规划") return None try: # 获取发送者名称(动作修改已在并行执行前完成) sender_name = self._get_sender_name(message) no_action = { "action_result": { "action_type": "no_action", "action_data": {}, "reasoning": "规划器初始化默认", "is_parallel": True, }, "chat_context": "", "action_prompt": "", } # 检查是否应该跳过规划 if self.action_modifier.should_skip_planning(): logger.debug(f"[{self.stream_name}] 没有可用动作,跳过规划") self.action_type = "no_action" return no_action # 执行规划 plan_result = await self.planner.plan(message, sender_name) action_type = plan_result["action_result"]["action_type"] action_data = plan_result["action_result"]["action_data"] reasoning = plan_result["action_result"]["reasoning"] is_parallel = plan_result["action_result"].get("is_parallel", False) logger.info( f"[{self.stream_name}] Planner决策: {action_type}, 理由: {reasoning}, 并行执行: {is_parallel}" ) self.action_type = action_type # 更新实例属性 self.is_parallel_action = is_parallel # 新增:保存并行执行标志 # 如果规划器决定不执行任何动作 if action_type == "no_action": logger.debug(f"[{self.stream_name}] Planner决定不执行任何额外动作") return no_action # 执行额外的动作(不影响回复生成) action_result = await self._execute_action(action_type, action_data, message, thinking_id) if action_result is not None: logger.info(f"[{self.stream_name}] 额外动作 {action_type} 执行完成") else: logger.warning(f"[{self.stream_name}] 额外动作 {action_type} 执行失败") return { "action_type": action_type, "action_data": action_data, "reasoning": reasoning, "is_parallel": is_parallel, } except Exception as e: logger.error(f"[{self.stream_name}] Planner执行失败: {e}") return no_action # 并行执行回复生成和动作规划 self.action_type = None # 初始化动作类型 self.is_parallel_action = False # 初始化并行动作标志 response_set, plan_result = await asyncio.gather( generate_normal_response(), plan_and_execute_actions(), return_exceptions=True ) # 处理生成回复的结果 if isinstance(response_set, Exception): logger.error(f"[{self.stream_name}] 回复生成异常: {response_set}") response_set = None # 处理规划结果(可选,不影响回复) if isinstance(plan_result, Exception): logger.error(f"[{self.stream_name}] 动作规划异常: {plan_result}") elif plan_result: logger.debug(f"[{self.stream_name}] 额外动作处理完成: {self.action_type}") if not response_set or ( self.enable_planner and self.action_type not in ["no_action"] and not self.is_parallel_action ): if not response_set: logger.info(f"[{self.stream_name}] 模型未生成回复内容") elif self.enable_planner and self.action_type not in ["no_action"] and not self.is_parallel_action: logger.info(f"[{self.stream_name}] 模型选择其他动作(非并行动作)") # 如果模型未生成回复,移除思考消息 container = await message_manager.get_container(self.stream_id) # 使用 self.stream_id for msg in container.messages[:]: if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id: container.messages.remove(msg) logger.debug(f"[{self.stream_name}] 已移除未产生回复的思考消息 {thinking_id}") break # 需要在此处也调用 not_reply_handle 和 delete 吗? # 如果是因为模型没回复,也算是一种 "未回复" return False # logger.info(f"[{self.stream_name}] 回复内容: {response_set}") if self._disabled: logger.info(f"[{self.stream_name}] 已停用,忽略 normal_response。") return False # 发送回复 (不再需要传入 chat) first_bot_msg = await self._add_messages_to_manager(message, response_set, thinking_id) # 检查 first_bot_msg 是否为 None (例如思考消息已被移除的情况) if first_bot_msg: # 消息段已在接收消息时更新,这里不需要额外处理 # 记录回复信息到最近回复列表中 reply_info = { "time": time.time(), "user_message": message.processed_plain_text, "user_info": { "user_id": message.message_info.user_info.user_id, "user_nickname": message.message_info.user_info.user_nickname, }, "response": response_set, # "is_mentioned": is_mentioned, "is_reference_reply": message.reply is not None, # 判断是否为引用回复 # "timing": {k: round(v, 2) for k, v in timing_results.items()}, } self.recent_replies.append(reply_info) # 保持最近回复历史在限定数量内 if len(self.recent_replies) > self.max_replies_history: self.recent_replies = self.recent_replies[-self.max_replies_history :] return response_set if response_set else False # 改为实例方法, 移除 chat 参数 async def start_chat(self): """启动聊天任务。""" logger.debug(f"[{self.stream_name}] 开始启动聊天任务") # 重置停用标志 self._disabled = False # 检查是否已有运行中的任务 if self._chat_task and not self._chat_task.done(): logger.info(f"[{self.stream_name}] 聊天轮询任务已在运行中。") return # 清理可能存在的已完成任务引用 if self._chat_task and self._chat_task.done(): self._chat_task = None try: logger.info(f"[{self.stream_name}] 创建新的聊天轮询任务,模式: {self.reply_mode}") if self.reply_mode == "priority": polling_task_send = asyncio.create_task(self._priority_chat_loop()) polling_task_recv = asyncio.create_task(self._priority_chat_loop_add_message()) print("555") polling_task = asyncio.gather(polling_task_send, polling_task_recv) print("666") else: # 默认或 "interest" 模式 polling_task = asyncio.create_task(self._reply_interested_message()) # 设置回调 polling_task.add_done_callback(lambda t: self._handle_task_completion(t)) # 保存任务引用 self._chat_task = polling_task logger.debug(f"[{self.stream_name}] 聊天任务启动完成") except Exception as e: logger.error(f"[{self.stream_name}] 启动聊天任务失败: {e}") self._chat_task = None raise def _handle_task_completion(self, task: asyncio.Task): """任务完成回调处理""" try: # 简化回调逻辑,避免复杂的异常处理 logger.debug(f"[{self.stream_name}] 任务完成回调被调用") # 检查是否是我们管理的任务 if task is not self._chat_task: # 如果已经不是当前任务(可能在stop_chat中已被清空),直接返回 logger.debug(f"[{self.stream_name}] 回调的任务不是当前管理的任务") return # 清理任务引用 self._chat_task = None logger.debug(f"[{self.stream_name}] 任务引用已清理") # 简单记录任务状态,不进行复杂处理 if task.cancelled(): logger.debug(f"[{self.stream_name}] 任务已取消") elif task.done(): try: # 尝试获取异常,但不抛出 exc = task.exception() if exc: logger.error(f"[{self.stream_name}] 任务异常: {type(exc).__name__}: {exc}", exc_info=exc) else: logger.debug(f"[{self.stream_name}] 任务正常完成") except Exception as e: # 获取异常时也可能出错,静默处理 logger.debug(f"[{self.stream_name}] 获取任务异常时出错: {e}") except Exception as e: # 回调函数中的任何异常都要捕获,避免影响系统 logger.error(f"[{self.stream_name}] 任务完成回调处理出错: {e}") # 确保任务引用被清理 self._chat_task = None # 改为实例方法, 移除 stream_id 参数 async def stop_chat(self): """停止当前实例的兴趣监控任务。""" logger.debug(f"[{self.stream_name}] 开始停止聊天任务") # 立即设置停用标志,防止新任务启动 self._disabled = True # 如果没有运行中的任务,直接返回 if not self._chat_task or self._chat_task.done(): logger.debug(f"[{self.stream_name}] 没有运行中的任务,直接完成停止") self._chat_task = None return # 保存任务引用并立即清空,避免回调中的循环引用 task_to_cancel = self._chat_task self._chat_task = None logger.debug(f"[{self.stream_name}] 取消聊天任务") # 尝试优雅取消任务 task_to_cancel.cancel() # 不等待任务完成,让它自然结束 # 这样可以避免等待过程中的潜在递归问题 # 异步清理思考消息,不阻塞当前流程 asyncio.create_task(self._cleanup_thinking_messages_async()) logger.debug(f"[{self.stream_name}] 聊天任务停止完成") async def _cleanup_thinking_messages_async(self): """异步清理思考消息,避免阻塞主流程""" try: # 添加短暂延迟,让任务有时间响应取消 await asyncio.sleep(0.1) container = await message_manager.get_container(self.stream_id) if container: # 查找并移除所有 MessageThinking 类型的消息 thinking_messages = [msg for msg in container.messages[:] if isinstance(msg, MessageThinking)] if thinking_messages: for msg in thinking_messages: container.messages.remove(msg) logger.info(f"[{self.stream_name}] 清理了 {len(thinking_messages)} 条未处理的思考消息。") except Exception as e: logger.error(f"[{self.stream_name}] 异步清理思考消息时出错: {e}") # 不打印完整栈跟踪,避免日志污染 # 获取最近回复记录的方法 def get_recent_replies(self, limit: int = 10) -> List[dict]: """获取最近的回复记录 Args: limit: 最大返回数量,默认10条 Returns: List[dict]: 最近的回复记录列表,每项包含: time: 回复时间戳 user_message: 用户消息内容 user_info: 用户信息(user_id, user_nickname) response: 回复内容 is_mentioned: 是否被提及(@) is_reference_reply: 是否为引用回复 timing: 各阶段耗时 """ # 返回最近的limit条记录,按时间倒序排列 return sorted(self.recent_replies[-limit:], key=lambda x: x["time"], reverse=True) def adjust_reply_frequency(self): """ 根据预设规则动态调整回复意愿(willing_amplifier)。 - 评估周期:10分钟 - 目标频率:由 global_config.chat.talk_frequency 定义(例如 1条/分钟) - 调整逻辑: - 0条回复 -> 5.0x 意愿 - 达到目标回复数 -> 1.0x 意愿(基准) - 达到目标2倍回复数 -> 0.2x 意愿 - 中间值线性变化 - 增益抑制:如果最近5分钟回复过快,则不增加意愿。 """ # --- 1. 定义参数 --- evaluation_minutes = 10.0 target_replies_per_min = global_config.chat.get_current_talk_frequency( self.stream_id ) # 目标频率:e.g. 1条/分钟 target_replies_in_window = target_replies_per_min * evaluation_minutes # 10分钟内的目标回复数 if target_replies_in_window <= 0: logger.debug(f"[{self.stream_name}] 目标回复频率为0或负数,不调整意愿放大器。") return # --- 2. 获取近期统计数据 --- stats_10_min = get_recent_message_stats(minutes=evaluation_minutes, chat_id=self.stream_id) bot_reply_count_10_min = stats_10_min["bot_reply_count"] # --- 3. 计算新的意愿放大器 (willing_amplifier) --- # 基于回复数在 [0, target*2] 区间内进行分段线性映射 if bot_reply_count_10_min <= target_replies_in_window: # 在 [0, 目标数] 区间,意愿从 5.0 线性下降到 1.0 new_amplifier = 5.0 + (bot_reply_count_10_min - 0) * (1.0 - 5.0) / (target_replies_in_window - 0) elif bot_reply_count_10_min <= target_replies_in_window * 2: # 在 [目标数, 目标数*2] 区间,意愿从 1.0 线性下降到 0.2 over_target_cap = target_replies_in_window * 2 new_amplifier = 1.0 + (bot_reply_count_10_min - target_replies_in_window) * (0.2 - 1.0) / ( over_target_cap - target_replies_in_window ) else: # 超过目标数2倍,直接设为最小值 new_amplifier = 0.2 # --- 4. 检查是否需要抑制增益 --- # "如果邻近5分钟内,回复数量 > 频率/2,就不再进行增益" suppress_gain = False if new_amplifier > self.willing_amplifier: # 仅在计算结果为增益时检查 suppression_minutes = 5.0 # 5分钟内目标回复数的一半 suppression_threshold = (target_replies_per_min / 2) * suppression_minutes # e.g., (1/2)*5 = 2.5 stats_5_min = get_recent_message_stats(minutes=suppression_minutes, chat_id=self.stream_id) bot_reply_count_5_min = stats_5_min["bot_reply_count"] if bot_reply_count_5_min > suppression_threshold: suppress_gain = True # --- 5. 更新意愿放大器 --- if suppress_gain: logger.debug( f"[{self.stream_name}] 回复增益被抑制。最近5分钟内回复数 ({bot_reply_count_5_min}) " f"> 阈值 ({suppression_threshold:.1f})。意愿放大器保持在 {self.willing_amplifier:.2f}" ) # 不做任何改动 else: # 限制最终值在 [0.2, 5.0] 范围内 self.willing_amplifier = max(0.2, min(5.0, new_amplifier)) logger.debug( f"[{self.stream_name}] 调整回复意愿。10分钟内回复: {bot_reply_count_10_min} (目标: {target_replies_in_window:.0f}) -> " f"意愿放大器更新为: {self.willing_amplifier:.2f}" ) def _get_sender_name(self, message: MessageRecv) -> str: """获取发送者名称,用于planner""" if message.chat_stream.user_info: user_info = message.chat_stream.user_info if user_info.user_cardname and user_info.user_nickname: return f"[{user_info.user_nickname}][群昵称:{user_info.user_cardname}]" elif user_info.user_nickname: return f"[{user_info.user_nickname}]" else: return f"用户({user_info.user_id})" return "某人" async def _execute_action( self, action_type: str, action_data: dict, message: MessageRecv, thinking_id: str ) -> Optional[bool]: """执行具体的动作,只返回执行成功与否""" try: # 创建动作处理器实例 action_handler = self.action_manager.create_action( action_name=action_type, action_data=action_data, reasoning=action_data.get("reasoning", ""), cycle_timers={}, # normal_chat使用空的cycle_timers thinking_id=thinking_id, chat_stream=self.chat_stream, log_prefix=self.stream_name, shutting_down=self._disabled, ) if action_handler: # 执行动作 result = await action_handler.handle_action() success = False if result and isinstance(result, tuple) and len(result) >= 2: # handle_action返回 (success: bool, message: str) success = result[0] elif result: # 如果返回了其他结果,假设成功 success = True return success except Exception as e: logger.error(f"[{self.stream_name}] 执行动作 {action_type} 失败: {e}") return False def set_planner_enabled(self, enabled: bool): """设置是否启用planner""" self.enable_planner = enabled logger.info(f"[{self.stream_name}] Planner {'启用' if enabled else '禁用'}") def get_action_manager(self) -> ActionManager: """获取动作管理器实例""" return self.action_manager async def _check_relation_building_conditions(self): """检查person_engaged_cache中是否有满足关系构建条件的用户""" users_to_build_relationship = [] for person_id, segments in list(self.person_engaged_cache.items()): total_message_count = self._get_total_message_count(person_id) if total_message_count >= 45: users_to_build_relationship.append(person_id) logger.info( f"[{self.stream_name}] 用户 {person_id} 满足关系构建条件,总消息数:{total_message_count},消息段数:{len(segments)}" ) elif total_message_count > 0: # 记录进度信息 logger.debug( f"[{self.stream_name}] 用户 {person_id} 进度:{total_message_count}/45 条消息,{len(segments)} 个消息段" ) # 为满足条件的用户构建关系 for person_id in users_to_build_relationship: segments = self.person_engaged_cache[person_id] # 异步执行关系构建 asyncio.create_task(self._build_relation_for_person_segments(person_id, segments)) # 移除已处理的用户缓存 del self.person_engaged_cache[person_id] self._save_cache() logger.info(f"[{self.stream_name}] 用户 {person_id} 关系构建已启动,缓存已清理") async def _build_relation_for_person_segments(self, person_id: str, segments: List[Dict[str, any]]): """基于消息段更新用户印象,统一使用focus chat的构建方式""" if not segments: return logger.debug(f"[{self.stream_name}] 开始为 {person_id} 基于 {len(segments)} 个消息段更新印象") try: processed_messages = [] for i, segment in enumerate(segments): start_time = segment["start_time"] end_time = segment["end_time"] segment["message_count"] start_date = time.strftime("%Y-%m-%d %H:%M", time.localtime(start_time)) # 获取该段的消息(包含边界) segment_messages = get_raw_msg_by_timestamp_with_chat_inclusive(self.stream_id, start_time, end_time) logger.debug( f"[{self.stream_name}] 消息段 {i + 1}: {start_date} - {time.strftime('%Y-%m-%d %H:%M', time.localtime(end_time))}, 消息数: {len(segment_messages)}" ) if segment_messages: # 如果不是第一个消息段,在消息列表前添加间隔标识 if i > 0: # 创建一个特殊的间隔消息 gap_message = { "time": start_time - 0.1, # 稍微早于段开始时间 "user_id": "system", "user_platform": "system", "user_nickname": "系统", "user_cardname": "", "display_message": f"...(中间省略一些消息){start_date} 之后的消息如下...", "is_action_record": True, "chat_info_platform": segment_messages[0].get("chat_info_platform", ""), "chat_id": self.stream_id, } processed_messages.append(gap_message) # 添加该段的所有消息 processed_messages.extend(segment_messages) if processed_messages: # 按时间排序所有消息(包括间隔标识) processed_messages.sort(key=lambda x: x["time"]) logger.debug( f"[{self.stream_name}] 为 {person_id} 获取到总共 {len(processed_messages)} 条消息(包含间隔标识)用于印象更新" ) relationship_manager = get_relationship_manager() # 调用统一的更新方法 await relationship_manager.update_person_impression( person_id=person_id, timestamp=time.time(), bot_engaged_messages=processed_messages ) else: logger.debug(f"[{self.stream_name}] 没有找到 {person_id} 的消息段对应的消息,不更新印象") except Exception as e: logger.error(f"[{self.stream_name}] 为 {person_id} 更新印象时发生错误: {e}") logger.error(traceback.format_exc()) async def _check_should_switch_to_focus(self) -> bool: """ 检查是否满足切换到focus模式的条件 Returns: bool: 是否应该切换到focus模式 """ # 检查思考消息堆积情况 container = await message_manager.get_container(self.stream_id) if container: thinking_count = sum(1 for msg in container.messages if isinstance(msg, MessageThinking)) if thinking_count >= 4 * global_config.chat.auto_focus_threshold: # 如果堆积超过阈值条思考消息 logger.debug(f"[{self.stream_name}] 检测到思考消息堆积({thinking_count}条),切换到focus模式") return True if not self.recent_replies: return False current_time = time.time() time_threshold = 120 / global_config.chat.auto_focus_threshold reply_threshold = 6 * global_config.chat.auto_focus_threshold one_minute_ago = current_time - time_threshold # 统计指定时间内的回复数量 recent_reply_count = sum(1 for reply in self.recent_replies if reply["time"] > one_minute_ago) should_switch = recent_reply_count > reply_threshold if should_switch: logger.debug( f"[{self.stream_name}] 检测到{time_threshold:.0f}秒内回复数量({recent_reply_count})大于{reply_threshold},满足切换到focus模式条件" ) return should_switch