MaiBot/src/plugins/heartFC_chat/heartFC_generator.py

114 lines
3.8 KiB
Python

from typing import List, Optional
from ..models.utils_model import LLMRequest
from ...config.config import global_config
from ..chat.message import MessageRecv
from .heartflow_prompt_builder import prompt_builder
from ..chat.utils import process_llm_response
from src.common.logger import get_module_logger, LogConfig, LLM_STYLE_CONFIG
from src.plugins.respon_info_catcher.info_catcher import info_catcher_manager
from ..utils.timer_calculator import Timer
from src.plugins.moods.moods import MoodManager
# 定义日志配置
llm_config = LogConfig(
# 使用消息发送专用样式
console_format=LLM_STYLE_CONFIG["console_format"],
file_format=LLM_STYLE_CONFIG["file_format"],
)
logger = get_module_logger("llm_generator", config=llm_config)
class HeartFCGenerator:
def __init__(self):
self.model_normal = LLMRequest(
model=global_config.llm_normal,
temperature=global_config.llm_normal["temp"],
max_tokens=256,
request_type="response_heartflow",
)
self.model_sum = LLMRequest(
model=global_config.llm_summary_by_topic, temperature=0.6, max_tokens=2000, request_type="relation"
)
self.current_model_type = "r1" # 默认使用 R1
self.current_model_name = "unknown model"
async def generate_response(
self,
structured_info: str,
current_mind_info: str,
reason: str,
message: MessageRecv,
thinking_id: str,
) -> Optional[List[str]]:
"""根据当前模型类型选择对应的生成函数"""
arousal_multiplier = MoodManager.get_instance().get_arousal_multiplier()
current_model = self.model_normal
current_model.temperature = global_config.llm_normal["temp"] * arousal_multiplier # 激活度越高,温度越高
model_response = await self._generate_response_with_model(
structured_info, current_mind_info, reason, message, current_model, thinking_id
)
if model_response:
model_processed_response = await self._process_response(model_response)
return model_processed_response
else:
logger.info(f"{self.current_model_type}思考,失败")
return None
async def _generate_response_with_model(
self,
structured_info: str,
current_mind_info: str,
reason: str,
message: MessageRecv,
model: LLMRequest,
thinking_id: str,
) -> str:
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
with Timer() as _build_prompt:
prompt = await prompt_builder.build_prompt(
build_mode="focus",
reason=reason,
current_mind_info=current_mind_info,
structured_info=structured_info,
message_txt="",
sender_name="",
chat_stream=message.chat_stream,
)
# logger.info(f"构建prompt时间: {t_build_prompt.human_readable}")
try:
content, reasoning_content, self.current_model_name = await model.generate_response(prompt)
logger.info(f"\nprompt:{prompt}\n生成回复{content}\n")
info_catcher.catch_after_llm_generated(
prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=self.current_model_name
)
except Exception:
logger.exception("生成回复时出错")
return None
return content
async def _process_response(self, content: str) -> List[str]:
"""处理响应内容,返回处理后的内容和情感标签"""
if not content:
return None
processed_response = process_llm_response(content)
# print(f"得到了处理后的llm返回{processed_response}")
return processed_response