from typing import List, Optional from ..models.utils_model import LLMRequest from ...config.config import global_config from ..chat.message import MessageRecv from .heartflow_prompt_builder import prompt_builder from ..chat.utils import process_llm_response from src.common.logger import get_module_logger, LogConfig, LLM_STYLE_CONFIG from src.plugins.respon_info_catcher.info_catcher import info_catcher_manager from ..utils.timer_calculator import Timer from src.plugins.moods.moods import MoodManager # 定义日志配置 llm_config = LogConfig( # 使用消息发送专用样式 console_format=LLM_STYLE_CONFIG["console_format"], file_format=LLM_STYLE_CONFIG["file_format"], ) logger = get_module_logger("llm_generator", config=llm_config) class HeartFCGenerator: def __init__(self): self.model_normal = LLMRequest( model=global_config.llm_normal, temperature=global_config.llm_normal["temp"], max_tokens=256, request_type="response_heartflow", ) self.model_sum = LLMRequest( model=global_config.llm_summary_by_topic, temperature=0.6, max_tokens=2000, request_type="relation" ) self.current_model_type = "r1" # 默认使用 R1 self.current_model_name = "unknown model" async def generate_response( self, structured_info: str, current_mind_info: str, reason: str, message: MessageRecv, thinking_id: str, ) -> Optional[List[str]]: """根据当前模型类型选择对应的生成函数""" arousal_multiplier = MoodManager.get_instance().get_arousal_multiplier() current_model = self.model_normal current_model.temperature = global_config.llm_normal["temp"] * arousal_multiplier # 激活度越高,温度越高 model_response = await self._generate_response_with_model( structured_info, current_mind_info, reason, message, current_model, thinking_id ) if model_response: model_processed_response = await self._process_response(model_response) return model_processed_response else: logger.info(f"{self.current_model_type}思考,失败") return None async def _generate_response_with_model( self, structured_info: str, current_mind_info: str, reason: str, message: MessageRecv, model: LLMRequest, thinking_id: str, ) -> str: info_catcher = info_catcher_manager.get_info_catcher(thinking_id) with Timer() as _build_prompt: prompt = await prompt_builder.build_prompt( build_mode="focus", reason=reason, current_mind_info=current_mind_info, structured_info=structured_info, message_txt="", sender_name="", chat_stream=message.chat_stream, ) # logger.info(f"构建prompt时间: {t_build_prompt.human_readable}") try: content, reasoning_content, self.current_model_name = await model.generate_response(prompt) logger.info(f"\nprompt:{prompt}\n生成回复{content}\n") info_catcher.catch_after_llm_generated( prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=self.current_model_name ) except Exception: logger.exception("生成回复时出错") return None return content async def _process_response(self, content: str) -> List[str]: """处理响应内容,返回处理后的内容和情感标签""" if not content: return None processed_response = process_llm_response(content) # print(f"得到了处理后的llm返回{processed_response}") return processed_response