MaiBot/src/plugins/memory_system/memory.py

280 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# -*- coding: utf-8 -*-
import os
import jieba
from .llm_module import LLMModel
import networkx as nx
import matplotlib.pyplot as plt
import math
from collections import Counter
import datetime
import random
import time
from ..chat.config import global_config
import sys
from ...common.database import Database # 使用正确的导入语法
from ..chat.utils import calculate_information_content, get_cloest_chat_from_db
class Memory_graph:
def __init__(self):
self.G = nx.Graph() # 使用 networkx 的图结构
self.db = Database.get_instance()
def connect_dot(self, concept1, concept2):
self.G.add_edge(concept1, concept2)
def add_dot(self, concept, memory):
if concept in self.G:
# 如果节点已存在,将新记忆添加到现有列表中
if 'memory_items' in self.G.nodes[concept]:
if not isinstance(self.G.nodes[concept]['memory_items'], list):
# 如果当前不是列表,将其转换为列表
self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']]
self.G.nodes[concept]['memory_items'].append(memory)
else:
self.G.nodes[concept]['memory_items'] = [memory]
else:
# 如果是新节点,创建新的记忆列表
self.G.add_node(concept, memory_items=[memory])
def get_dot(self, concept):
# 检查节点是否存在于图中
if concept in self.G:
# 从图中获取节点数据
node_data = self.G.nodes[concept]
# print(node_data)
# 创建新的Memory_dot对象
return concept,node_data
return None
def get_related_item(self, topic, depth=1):
if topic not in self.G:
return [], []
first_layer_items = []
second_layer_items = []
# 获取相邻节点
neighbors = list(self.G.neighbors(topic))
# print(f"第一层: {topic}")
# 获取当前节点的记忆项
node_data = self.get_dot(topic)
if node_data:
concept, data = node_data
if 'memory_items' in data:
memory_items = data['memory_items']
if isinstance(memory_items, list):
first_layer_items.extend(memory_items)
else:
first_layer_items.append(memory_items)
# 只在depth=2时获取第二层记忆
if depth >= 2:
# 获取相邻节点的记忆项
for neighbor in neighbors:
# print(f"第二层: {neighbor}")
node_data = self.get_dot(neighbor)
if node_data:
concept, data = node_data
if 'memory_items' in data:
memory_items = data['memory_items']
if isinstance(memory_items, list):
second_layer_items.extend(memory_items)
else:
second_layer_items.append(memory_items)
return first_layer_items, second_layer_items
@property
def dots(self):
# 返回所有节点对应的 Memory_dot 对象
return [self.get_dot(node) for node in self.G.nodes()]
def save_graph_to_db(self):
# 保存节点
for node in self.G.nodes(data=True):
concept = node[0]
memory_items = node[1].get('memory_items', [])
# 查找是否存在同名节点
existing_node = self.db.db.graph_data.nodes.find_one({'concept': concept})
if existing_node:
# 如果存在,合并memory_items并去重
existing_items = existing_node.get('memory_items', [])
if not isinstance(existing_items, list):
existing_items = [existing_items] if existing_items else []
# 合并并去重
all_items = list(set(existing_items + memory_items))
# 更新节点
self.db.db.graph_data.nodes.update_one(
{'concept': concept},
{'$set': {'memory_items': all_items}}
)
else:
# 如果不存在,创建新节点
node_data = {
'concept': concept,
'memory_items': memory_items
}
self.db.db.graph_data.nodes.insert_one(node_data)
# 保存边
for edge in self.G.edges():
source, target = edge
# 查找是否存在同样的边
existing_edge = self.db.db.graph_data.edges.find_one({
'source': source,
'target': target
})
if existing_edge:
# 如果存在,增加num属性
num = existing_edge.get('num', 1) + 1
self.db.db.graph_data.edges.update_one(
{'source': source, 'target': target},
{'$set': {'num': num}}
)
else:
# 如果不存在,创建新边
edge_data = {
'source': source,
'target': target,
'num': 1
}
self.db.db.graph_data.edges.insert_one(edge_data)
def load_graph_from_db(self):
# 清空当前图
self.G.clear()
# 加载节点
nodes = self.db.db.graph_data.nodes.find()
for node in nodes:
memory_items = node.get('memory_items', [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
self.G.add_node(node['concept'], memory_items=memory_items)
# 加载边
edges = self.db.db.graph_data.edges.find()
for edge in edges:
self.G.add_edge(edge['source'], edge['target'], num=edge.get('num', 1))
# 海马体
class Hippocampus:
def __init__(self,memory_graph:Memory_graph):
self.memory_graph = memory_graph
self.llm_model = LLMModel()
self.llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5")
def get_memory_sample(self,chat_size=20,time_frequency:dict={'near':2,'mid':4,'far':3}):
current_timestamp = datetime.datetime.now().timestamp()
chat_text = []
#短期1h 中期4h 长期24h
for _ in range(time_frequency.get('near')): # 循环10次
random_time = current_timestamp - random.randint(1, 3600) # 随机时间
# print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
for _ in range(time_frequency.get('mid')): # 循环10次
random_time = current_timestamp - random.randint(3600, 3600*4) # 随机时间
# print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
for _ in range(time_frequency.get('far')): # 循环10次
random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
# print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}")
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
return chat_text
async def memory_compress(self, input_text, rate=1):
information_content = calculate_information_content(input_text)
print(f"文本的信息量(熵): {information_content:.4f} bits")
topic_num = max(1, min(5, int(information_content * rate / 4)))
topic_prompt = find_topic(input_text, topic_num)
topic_response = await self.llm_model.generate_response(topic_prompt)
# 检查 topic_response 是否为元组
if isinstance(topic_response, tuple):
topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串
else:
topics = topic_response.split(",")
compressed_memory = set()
for topic in topics:
topic_what_prompt = topic_what(input_text,topic)
topic_what_response = await self.llm_model_small.generate_response(topic_what_prompt)
compressed_memory.add((topic.strip(), topic_what_response[0])) # 将话题和记忆作为元组存储
return compressed_memory
async def build_memory(self,chat_size=12):
#最近消息获取频率
time_frequency = {'near':1,'mid':2,'far':2}
memory_sample = self.get_memory_sample(chat_size,time_frequency)
# print(f"\033[1;32m[记忆构建]\033[0m 获取记忆样本: {memory_sample}")
for i, input_text in enumerate(memory_sample, 1):
#加载进度可视化
progress = (i / len(memory_sample)) * 100
bar_length = 30
filled_length = int(bar_length * i // len(memory_sample))
bar = '' * filled_length + '-' * (bar_length - filled_length)
print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})")
if input_text:
# 生成压缩后记忆
first_memory = set()
first_memory = await self.memory_compress(input_text, 2.5)
#将记忆加入到图谱中
for topic, memory in first_memory:
topics = segment_text(topic)
print(f"\033[1;34m话题\033[0m: {topic},节点: {topics}, 记忆: {memory}")
for split_topic in topics:
self.memory_graph.add_dot(split_topic,memory)
for split_topic in topics:
for other_split_topic in topics:
if split_topic != other_split_topic:
self.memory_graph.connect_dot(split_topic, other_split_topic)
else:
print(f"空消息 跳过")
self.memory_graph.save_graph_to_db()
def segment_text(text):
seg_text = list(jieba.cut(text))
return seg_text
def find_topic(text, topic_num):
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
return prompt
def topic_what(text, topic):
prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好'
return prompt
from nonebot import get_driver
driver = get_driver()
config = driver.config
start_time = time.time()
Database.initialize(
host= config.mongodb_host,
port= int(config.mongodb_port),
db_name= config.database_name,
username= config.mongodb_username,
password= config.mongodb_password,
auth_source=config.mongodb_auth_source
)
#创建记忆图
memory_graph = Memory_graph()
#加载数据库中存储的记忆图
memory_graph.load_graph_from_db()
#创建海马体
hippocampus = Hippocampus(memory_graph)
end_time = time.time()
print(f"\033[32m[加载海马体耗时: {end_time - start_time:.2f} 秒]\033[0m")