# -*- coding: utf-8 -*- import os import jieba from .llm_module import LLMModel import networkx as nx import matplotlib.pyplot as plt import math from collections import Counter import datetime import random import time from ..chat.config import global_config import sys from ...common.database import Database # 使用正确的导入语法 from ..chat.utils import calculate_information_content, get_cloest_chat_from_db class Memory_graph: def __init__(self): self.G = nx.Graph() # 使用 networkx 的图结构 self.db = Database.get_instance() def connect_dot(self, concept1, concept2): self.G.add_edge(concept1, concept2) def add_dot(self, concept, memory): if concept in self.G: # 如果节点已存在,将新记忆添加到现有列表中 if 'memory_items' in self.G.nodes[concept]: if not isinstance(self.G.nodes[concept]['memory_items'], list): # 如果当前不是列表,将其转换为列表 self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']] self.G.nodes[concept]['memory_items'].append(memory) else: self.G.nodes[concept]['memory_items'] = [memory] else: # 如果是新节点,创建新的记忆列表 self.G.add_node(concept, memory_items=[memory]) def get_dot(self, concept): # 检查节点是否存在于图中 if concept in self.G: # 从图中获取节点数据 node_data = self.G.nodes[concept] # print(node_data) # 创建新的Memory_dot对象 return concept,node_data return None def get_related_item(self, topic, depth=1): if topic not in self.G: return [], [] first_layer_items = [] second_layer_items = [] # 获取相邻节点 neighbors = list(self.G.neighbors(topic)) # print(f"第一层: {topic}") # 获取当前节点的记忆项 node_data = self.get_dot(topic) if node_data: concept, data = node_data if 'memory_items' in data: memory_items = data['memory_items'] if isinstance(memory_items, list): first_layer_items.extend(memory_items) else: first_layer_items.append(memory_items) # 只在depth=2时获取第二层记忆 if depth >= 2: # 获取相邻节点的记忆项 for neighbor in neighbors: # print(f"第二层: {neighbor}") node_data = self.get_dot(neighbor) if node_data: concept, data = node_data if 'memory_items' in data: memory_items = data['memory_items'] if isinstance(memory_items, list): second_layer_items.extend(memory_items) else: second_layer_items.append(memory_items) return first_layer_items, second_layer_items @property def dots(self): # 返回所有节点对应的 Memory_dot 对象 return [self.get_dot(node) for node in self.G.nodes()] def save_graph_to_db(self): # 保存节点 for node in self.G.nodes(data=True): concept = node[0] memory_items = node[1].get('memory_items', []) # 查找是否存在同名节点 existing_node = self.db.db.graph_data.nodes.find_one({'concept': concept}) if existing_node: # 如果存在,合并memory_items并去重 existing_items = existing_node.get('memory_items', []) if not isinstance(existing_items, list): existing_items = [existing_items] if existing_items else [] # 合并并去重 all_items = list(set(existing_items + memory_items)) # 更新节点 self.db.db.graph_data.nodes.update_one( {'concept': concept}, {'$set': {'memory_items': all_items}} ) else: # 如果不存在,创建新节点 node_data = { 'concept': concept, 'memory_items': memory_items } self.db.db.graph_data.nodes.insert_one(node_data) # 保存边 for edge in self.G.edges(): source, target = edge # 查找是否存在同样的边 existing_edge = self.db.db.graph_data.edges.find_one({ 'source': source, 'target': target }) if existing_edge: # 如果存在,增加num属性 num = existing_edge.get('num', 1) + 1 self.db.db.graph_data.edges.update_one( {'source': source, 'target': target}, {'$set': {'num': num}} ) else: # 如果不存在,创建新边 edge_data = { 'source': source, 'target': target, 'num': 1 } self.db.db.graph_data.edges.insert_one(edge_data) def load_graph_from_db(self): # 清空当前图 self.G.clear() # 加载节点 nodes = self.db.db.graph_data.nodes.find() for node in nodes: memory_items = node.get('memory_items', []) if not isinstance(memory_items, list): memory_items = [memory_items] if memory_items else [] self.G.add_node(node['concept'], memory_items=memory_items) # 加载边 edges = self.db.db.graph_data.edges.find() for edge in edges: self.G.add_edge(edge['source'], edge['target'], num=edge.get('num', 1)) # 海马体 class Hippocampus: def __init__(self,memory_graph:Memory_graph): self.memory_graph = memory_graph self.llm_model = LLMModel() self.llm_model_small = LLMModel(model_name="deepseek-ai/DeepSeek-V2.5") def get_memory_sample(self,chat_size=20,time_frequency:dict={'near':2,'mid':4,'far':3}): current_timestamp = datetime.datetime.now().timestamp() chat_text = [] #短期:1h 中期:4h 长期:24h for _ in range(time_frequency.get('near')): # 循环10次 random_time = current_timestamp - random.randint(1, 3600) # 随机时间 # print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}") chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time) chat_text.append(chat_) for _ in range(time_frequency.get('mid')): # 循环10次 random_time = current_timestamp - random.randint(3600, 3600*4) # 随机时间 # print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}") chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time) chat_text.append(chat_) for _ in range(time_frequency.get('far')): # 循环10次 random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间 # print(f"获得 最近 随机时间戳对应的时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(random_time))}") chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time) chat_text.append(chat_) return chat_text async def memory_compress(self, input_text, rate=1): information_content = calculate_information_content(input_text) print(f"文本的信息量(熵): {information_content:.4f} bits") topic_num = max(1, min(5, int(information_content * rate / 4))) topic_prompt = find_topic(input_text, topic_num) topic_response = await self.llm_model.generate_response(topic_prompt) # 检查 topic_response 是否为元组 if isinstance(topic_response, tuple): topics = topic_response[0].split(",") # 假设第一个元素是我们需要的字符串 else: topics = topic_response.split(",") compressed_memory = set() for topic in topics: topic_what_prompt = topic_what(input_text,topic) topic_what_response = await self.llm_model_small.generate_response(topic_what_prompt) compressed_memory.add((topic.strip(), topic_what_response[0])) # 将话题和记忆作为元组存储 return compressed_memory async def build_memory(self,chat_size=12): #最近消息获取频率 time_frequency = {'near':1,'mid':2,'far':2} memory_sample = self.get_memory_sample(chat_size,time_frequency) # print(f"\033[1;32m[记忆构建]\033[0m 获取记忆样本: {memory_sample}") for i, input_text in enumerate(memory_sample, 1): #加载进度可视化 progress = (i / len(memory_sample)) * 100 bar_length = 30 filled_length = int(bar_length * i // len(memory_sample)) bar = '█' * filled_length + '-' * (bar_length - filled_length) print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})") if input_text: # 生成压缩后记忆 first_memory = set() first_memory = await self.memory_compress(input_text, 2.5) #将记忆加入到图谱中 for topic, memory in first_memory: topics = segment_text(topic) print(f"\033[1;34m话题\033[0m: {topic},节点: {topics}, 记忆: {memory}") for split_topic in topics: self.memory_graph.add_dot(split_topic,memory) for split_topic in topics: for other_split_topic in topics: if split_topic != other_split_topic: self.memory_graph.connect_dot(split_topic, other_split_topic) else: print(f"空消息 跳过") self.memory_graph.save_graph_to_db() def segment_text(text): seg_text = list(jieba.cut(text)) return seg_text def find_topic(text, topic_num): prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。' return prompt def topic_what(text, topic): prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好' return prompt from nonebot import get_driver driver = get_driver() config = driver.config start_time = time.time() Database.initialize( host= config.mongodb_host, port= int(config.mongodb_port), db_name= config.database_name, username= config.mongodb_username, password= config.mongodb_password, auth_source=config.mongodb_auth_source ) #创建记忆图 memory_graph = Memory_graph() #加载数据库中存储的记忆图 memory_graph.load_graph_from_db() #创建海马体 hippocampus = Hippocampus(memory_graph) end_time = time.time() print(f"\033[32m[加载海马体耗时: {end_time - start_time:.2f} 秒]\033[0m")