mirror of https://github.com/Mai-with-u/MaiBot.git
243 lines
12 KiB
Python
243 lines
12 KiB
Python
import time
|
||
import traceback
|
||
from ..memory_system.Hippocampus import HippocampusManager
|
||
from ...config.config import global_config
|
||
from ..chat.message import MessageRecv
|
||
from ..storage.storage import MessageStorage
|
||
from ..chat.utils import is_mentioned_bot_in_message
|
||
from ..message import Seg
|
||
from src.heart_flow.heartflow import heartflow
|
||
from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
|
||
from ..chat.chat_stream import chat_manager
|
||
from ..chat.message_buffer import message_buffer
|
||
from ..utils.timer_calculater import Timer
|
||
from src.plugins.person_info.relationship_manager import relationship_manager
|
||
from .normal_chat import ReasoningChat
|
||
|
||
# 定义日志配置
|
||
processor_config = LogConfig(
|
||
console_format=CHAT_STYLE_CONFIG["console_format"],
|
||
file_format=CHAT_STYLE_CONFIG["file_format"],
|
||
)
|
||
logger = get_module_logger("heartflow_processor", config=processor_config)
|
||
|
||
|
||
class HeartFCProcessor:
|
||
def __init__(self):
|
||
self.storage = MessageStorage()
|
||
self.normal_chat = ReasoningChat.get_instance()
|
||
|
||
async def process_message(self, message_data: str) -> None:
|
||
"""处理接收到的原始消息数据,完成消息解析、缓冲、过滤、存储、兴趣度计算与更新等核心流程。
|
||
|
||
此函数是消息处理的核心入口,负责接收原始字符串格式的消息数据,并将其转化为结构化的 `MessageRecv` 对象。
|
||
主要执行步骤包括:
|
||
1. 解析 `message_data` 为 `MessageRecv` 对象,提取用户信息、群组信息等。
|
||
2. 将消息加入 `message_buffer` 进行缓冲处理,以应对消息轰炸或者某些人一条消息分几次发等情况。
|
||
3. 获取或创建对应的 `chat_stream` 和 `subheartflow` 实例,用于管理会话状态和心流。
|
||
4. 对消息内容进行初步处理(如提取纯文本)。
|
||
5. 应用全局配置中的过滤词和正则表达式,过滤不符合规则的消息。
|
||
6. 查询消息缓冲结果,如果消息被缓冲器拦截(例如,判断为消息轰炸的一部分),则中止后续处理。
|
||
7. 对于通过缓冲的消息,将其存储到 `MessageStorage` 中。
|
||
|
||
8. 调用海马体(`HippocampusManager`)计算消息内容的记忆激活率。(这部分算法后续会进行优化)
|
||
9. 根据是否被提及(@)和记忆激活率,计算最终的兴趣度增量。(提及的额外兴趣增幅)
|
||
10. 使用计算出的增量更新 `InterestManager` 中对应会话的兴趣度。
|
||
11. 记录处理后的消息信息及当前的兴趣度到日志。
|
||
|
||
注意:此函数本身不负责生成和发送回复。回复的决策和生成逻辑被移至 `HeartFC_Chat` 类中的监控任务,
|
||
该任务会根据 `InterestManager` 中的兴趣度变化来决定何时触发回复。
|
||
|
||
Args:
|
||
message_data: str: 从消息源接收到的原始消息字符串。
|
||
"""
|
||
timing_results = {} # 初始化 timing_results
|
||
message = None
|
||
try:
|
||
message = MessageRecv(message_data)
|
||
groupinfo = message.message_info.group_info
|
||
userinfo = message.message_info.user_info
|
||
messageinfo = message.message_info
|
||
|
||
# 消息加入缓冲池
|
||
await message_buffer.start_caching_messages(message)
|
||
|
||
# 创建聊天流
|
||
chat = await chat_manager.get_or_create_stream(
|
||
platform=messageinfo.platform,
|
||
user_info=userinfo,
|
||
group_info=groupinfo,
|
||
)
|
||
|
||
# --- 确保 SubHeartflow 存在 ---
|
||
subheartflow = await heartflow.create_subheartflow(chat.stream_id)
|
||
if not subheartflow:
|
||
logger.error(f"无法为 stream_id {chat.stream_id} 创建或获取 SubHeartflow,中止处理")
|
||
return
|
||
|
||
# --- 添加兴趣追踪启动 (现在移动到这里,确保 subheartflow 存在后启动) ---
|
||
# 在获取到 chat 对象和确认 subheartflow 后,启动对该聊天流的兴趣监控
|
||
await self.normal_chat.start_monitoring_interest(chat) # start_monitoring_interest 内部需要修改以适应
|
||
# --- 结束添加 ---
|
||
|
||
message.update_chat_stream(chat)
|
||
|
||
await heartflow.create_subheartflow(chat.stream_id)
|
||
|
||
await message.process()
|
||
logger.trace(f"消息处理成功: {message.processed_plain_text}")
|
||
|
||
# 过滤词/正则表达式过滤
|
||
if self._check_ban_words(message.processed_plain_text, chat, userinfo) or self._check_ban_regex(
|
||
message.raw_message, chat, userinfo
|
||
):
|
||
return
|
||
|
||
# 查询缓冲器结果
|
||
buffer_result = await message_buffer.query_buffer_result(message)
|
||
|
||
# 处理缓冲器结果 (Bombing logic)
|
||
if not buffer_result:
|
||
f_type = "seglist"
|
||
if message.message_segment.type != "seglist":
|
||
f_type = message.message_segment.type
|
||
else:
|
||
if (
|
||
isinstance(message.message_segment.data, list)
|
||
and all(isinstance(x, Seg) for x in message.message_segment.data)
|
||
and len(message.message_segment.data) == 1
|
||
):
|
||
f_type = message.message_segment.data[0].type
|
||
if f_type == "text":
|
||
logger.debug(f"触发缓冲,消息:{message.processed_plain_text}")
|
||
elif f_type == "image":
|
||
logger.debug("触发缓冲,表情包/图片等待中")
|
||
elif f_type == "seglist":
|
||
logger.debug("触发缓冲,消息列表等待中")
|
||
return # 被缓冲器拦截,不生成回复
|
||
|
||
# ---- 只有通过缓冲的消息才进行存储和后续处理 ----
|
||
|
||
# 存储消息 (使用可能被缓冲器更新过的 message)
|
||
try:
|
||
await self.storage.store_message(message, chat)
|
||
logger.trace(f"存储成功 (通过缓冲后): {message.processed_plain_text}")
|
||
except Exception as e:
|
||
logger.error(f"存储消息失败: {e}")
|
||
logger.error(traceback.format_exc())
|
||
# 存储失败可能仍需考虑是否继续,暂时返回
|
||
return
|
||
|
||
# 激活度计算 (使用可能被缓冲器更新过的 message.processed_plain_text)
|
||
is_mentioned, _ = is_mentioned_bot_in_message(message)
|
||
interested_rate = 0.0 # 默认值
|
||
try:
|
||
with Timer("记忆激活", timing_results):
|
||
interested_rate = await HippocampusManager.get_instance().get_activate_from_text(
|
||
message.processed_plain_text,
|
||
fast_retrieval=True, # 使用更新后的文本
|
||
)
|
||
logger.trace(f"记忆激活率 (通过缓冲后): {interested_rate:.2f}")
|
||
except Exception as e:
|
||
logger.error(f"计算记忆激活率失败: {e}")
|
||
logger.error(traceback.format_exc())
|
||
|
||
# --- 修改:兴趣度更新逻辑 --- #
|
||
if is_mentioned:
|
||
interest_increase_on_mention = 2
|
||
mentioned_boost = interest_increase_on_mention # 从配置获取提及增加值
|
||
interested_rate += mentioned_boost
|
||
logger.trace(f"消息提及机器人,额外增加兴趣 {mentioned_boost:.2f}")
|
||
|
||
# 更新兴趣度 (调用 SubHeartflow 的方法)
|
||
current_interest = 0.0 # 初始化
|
||
try:
|
||
# 获取当前时间,传递给 increase_interest
|
||
current_time = time.time()
|
||
subheartflow.interest_chatting.increase_interest(current_time, value=interested_rate)
|
||
current_interest = subheartflow.get_interest_level() # 获取更新后的值
|
||
|
||
logger.trace(
|
||
f"使用激活率 {interested_rate:.2f} 更新后 (通过缓冲后),当前兴趣度: {current_interest:.2f} (Stream: {chat.stream_id})"
|
||
)
|
||
|
||
# 添加到 SubHeartflow 的 interest_dict
|
||
subheartflow.add_interest_dict_entry(message, interested_rate, is_mentioned)
|
||
logger.trace(
|
||
f"Message {message.message_info.message_id} added to interest dict for stream {chat.stream_id}"
|
||
)
|
||
|
||
except Exception as e:
|
||
logger.error(f"更新兴趣度失败 (Stream: {chat.stream_id}): {e}")
|
||
logger.error(traceback.format_exc())
|
||
# --- 结束修改 --- #
|
||
|
||
# 打印消息接收和处理信息
|
||
mes_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||
current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time))
|
||
logger.info(
|
||
f"[{current_time}][{mes_name}]"
|
||
f"{chat.user_info.user_nickname}:"
|
||
f"{message.processed_plain_text}"
|
||
f"兴趣度: {current_interest:.2f}"
|
||
)
|
||
|
||
try:
|
||
is_known = await relationship_manager.is_known_some_one(
|
||
message.message_info.platform, message.message_info.user_info.user_id
|
||
)
|
||
if not is_known:
|
||
logger.info(f"首次认识用户: {message.message_info.user_info.user_nickname}")
|
||
await relationship_manager.first_knowing_some_one(
|
||
message.message_info.platform,
|
||
message.message_info.user_info.user_id,
|
||
message.message_info.user_info.user_nickname,
|
||
message.message_info.user_info.user_cardname or message.message_info.user_info.user_nickname,
|
||
"",
|
||
)
|
||
else:
|
||
# logger.debug(f"已认识用户: {message.message_info.user_info.user_nickname}")
|
||
if not await relationship_manager.is_qved_name(
|
||
message.message_info.platform, message.message_info.user_info.user_id
|
||
):
|
||
logger.info(f"更新已认识但未取名的用户: {message.message_info.user_info.user_nickname}")
|
||
await relationship_manager.first_knowing_some_one(
|
||
message.message_info.platform,
|
||
message.message_info.user_info.user_id,
|
||
message.message_info.user_info.user_nickname,
|
||
message.message_info.user_info.user_cardname
|
||
or message.message_info.user_info.user_nickname,
|
||
"",
|
||
)
|
||
except Exception as e:
|
||
logger.error(f"处理认识关系失败: {e}")
|
||
logger.error(traceback.format_exc())
|
||
|
||
except Exception as e:
|
||
logger.error(f"消息处理失败 (process_message V3): {e}")
|
||
logger.error(traceback.format_exc())
|
||
if message: # 记录失败的消息内容
|
||
logger.error(f"失败消息原始内容: {message.raw_message}")
|
||
|
||
def _check_ban_words(self, text: str, chat, userinfo) -> bool:
|
||
"""检查消息中是否包含过滤词"""
|
||
for word in global_config.ban_words:
|
||
if word in text:
|
||
logger.info(
|
||
f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}"
|
||
)
|
||
logger.info(f"[过滤词识别]消息中含有{word},filtered")
|
||
return True
|
||
return False
|
||
|
||
def _check_ban_regex(self, text: str, chat, userinfo) -> bool:
|
||
"""检查消息是否匹配过滤正则表达式"""
|
||
for pattern in global_config.ban_msgs_regex:
|
||
if pattern.search(text):
|
||
logger.info(
|
||
f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}"
|
||
)
|
||
logger.info(f"[正则表达式过滤]消息匹配到{pattern},filtered")
|
||
return True
|
||
return False
|