import time import traceback from ..memory_system.Hippocampus import HippocampusManager from ...config.config import global_config from ..chat.message import MessageRecv from ..storage.storage import MessageStorage from ..chat.utils import is_mentioned_bot_in_message from ..message import Seg from src.heart_flow.heartflow import heartflow from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig from ..chat.chat_stream import chat_manager from ..chat.message_buffer import message_buffer from ..utils.timer_calculater import Timer from src.plugins.person_info.relationship_manager import relationship_manager from .normal_chat import ReasoningChat # 定义日志配置 processor_config = LogConfig( console_format=CHAT_STYLE_CONFIG["console_format"], file_format=CHAT_STYLE_CONFIG["file_format"], ) logger = get_module_logger("heartflow_processor", config=processor_config) class HeartFCProcessor: def __init__(self): self.storage = MessageStorage() self.normal_chat = ReasoningChat.get_instance() async def process_message(self, message_data: str) -> None: """处理接收到的原始消息数据,完成消息解析、缓冲、过滤、存储、兴趣度计算与更新等核心流程。 此函数是消息处理的核心入口,负责接收原始字符串格式的消息数据,并将其转化为结构化的 `MessageRecv` 对象。 主要执行步骤包括: 1. 解析 `message_data` 为 `MessageRecv` 对象,提取用户信息、群组信息等。 2. 将消息加入 `message_buffer` 进行缓冲处理,以应对消息轰炸或者某些人一条消息分几次发等情况。 3. 获取或创建对应的 `chat_stream` 和 `subheartflow` 实例,用于管理会话状态和心流。 4. 对消息内容进行初步处理(如提取纯文本)。 5. 应用全局配置中的过滤词和正则表达式,过滤不符合规则的消息。 6. 查询消息缓冲结果,如果消息被缓冲器拦截(例如,判断为消息轰炸的一部分),则中止后续处理。 7. 对于通过缓冲的消息,将其存储到 `MessageStorage` 中。 8. 调用海马体(`HippocampusManager`)计算消息内容的记忆激活率。(这部分算法后续会进行优化) 9. 根据是否被提及(@)和记忆激活率,计算最终的兴趣度增量。(提及的额外兴趣增幅) 10. 使用计算出的增量更新 `InterestManager` 中对应会话的兴趣度。 11. 记录处理后的消息信息及当前的兴趣度到日志。 注意:此函数本身不负责生成和发送回复。回复的决策和生成逻辑被移至 `HeartFC_Chat` 类中的监控任务, 该任务会根据 `InterestManager` 中的兴趣度变化来决定何时触发回复。 Args: message_data: str: 从消息源接收到的原始消息字符串。 """ timing_results = {} # 初始化 timing_results message = None try: message = MessageRecv(message_data) groupinfo = message.message_info.group_info userinfo = message.message_info.user_info messageinfo = message.message_info # 消息加入缓冲池 await message_buffer.start_caching_messages(message) # 创建聊天流 chat = await chat_manager.get_or_create_stream( platform=messageinfo.platform, user_info=userinfo, group_info=groupinfo, ) # --- 确保 SubHeartflow 存在 --- subheartflow = await heartflow.create_subheartflow(chat.stream_id) if not subheartflow: logger.error(f"无法为 stream_id {chat.stream_id} 创建或获取 SubHeartflow,中止处理") return # --- 添加兴趣追踪启动 (现在移动到这里,确保 subheartflow 存在后启动) --- # 在获取到 chat 对象和确认 subheartflow 后,启动对该聊天流的兴趣监控 await self.normal_chat.start_monitoring_interest(chat) # start_monitoring_interest 内部需要修改以适应 # --- 结束添加 --- message.update_chat_stream(chat) await heartflow.create_subheartflow(chat.stream_id) await message.process() logger.trace(f"消息处理成功: {message.processed_plain_text}") # 过滤词/正则表达式过滤 if self._check_ban_words(message.processed_plain_text, chat, userinfo) or self._check_ban_regex( message.raw_message, chat, userinfo ): return # 查询缓冲器结果 buffer_result = await message_buffer.query_buffer_result(message) # 处理缓冲器结果 (Bombing logic) if not buffer_result: f_type = "seglist" if message.message_segment.type != "seglist": f_type = message.message_segment.type else: if ( isinstance(message.message_segment.data, list) and all(isinstance(x, Seg) for x in message.message_segment.data) and len(message.message_segment.data) == 1 ): f_type = message.message_segment.data[0].type if f_type == "text": logger.debug(f"触发缓冲,消息:{message.processed_plain_text}") elif f_type == "image": logger.debug("触发缓冲,表情包/图片等待中") elif f_type == "seglist": logger.debug("触发缓冲,消息列表等待中") return # 被缓冲器拦截,不生成回复 # ---- 只有通过缓冲的消息才进行存储和后续处理 ---- # 存储消息 (使用可能被缓冲器更新过的 message) try: await self.storage.store_message(message, chat) logger.trace(f"存储成功 (通过缓冲后): {message.processed_plain_text}") except Exception as e: logger.error(f"存储消息失败: {e}") logger.error(traceback.format_exc()) # 存储失败可能仍需考虑是否继续,暂时返回 return # 激活度计算 (使用可能被缓冲器更新过的 message.processed_plain_text) is_mentioned, _ = is_mentioned_bot_in_message(message) interested_rate = 0.0 # 默认值 try: with Timer("记忆激活", timing_results): interested_rate = await HippocampusManager.get_instance().get_activate_from_text( message.processed_plain_text, fast_retrieval=True, # 使用更新后的文本 ) logger.trace(f"记忆激活率 (通过缓冲后): {interested_rate:.2f}") except Exception as e: logger.error(f"计算记忆激活率失败: {e}") logger.error(traceback.format_exc()) # --- 修改:兴趣度更新逻辑 --- # if is_mentioned: interest_increase_on_mention = 2 mentioned_boost = interest_increase_on_mention # 从配置获取提及增加值 interested_rate += mentioned_boost logger.trace(f"消息提及机器人,额外增加兴趣 {mentioned_boost:.2f}") # 更新兴趣度 (调用 SubHeartflow 的方法) current_interest = 0.0 # 初始化 try: # 获取当前时间,传递给 increase_interest current_time = time.time() subheartflow.interest_chatting.increase_interest(current_time, value=interested_rate) current_interest = subheartflow.get_interest_level() # 获取更新后的值 logger.trace( f"使用激活率 {interested_rate:.2f} 更新后 (通过缓冲后),当前兴趣度: {current_interest:.2f} (Stream: {chat.stream_id})" ) # 添加到 SubHeartflow 的 interest_dict subheartflow.add_interest_dict_entry(message, interested_rate, is_mentioned) logger.trace( f"Message {message.message_info.message_id} added to interest dict for stream {chat.stream_id}" ) except Exception as e: logger.error(f"更新兴趣度失败 (Stream: {chat.stream_id}): {e}") logger.error(traceback.format_exc()) # --- 结束修改 --- # # 打印消息接收和处理信息 mes_name = chat.group_info.group_name if chat.group_info else "私聊" current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time)) logger.info( f"[{current_time}][{mes_name}]" f"{chat.user_info.user_nickname}:" f"{message.processed_plain_text}" f"兴趣度: {current_interest:.2f}" ) try: is_known = await relationship_manager.is_known_some_one( message.message_info.platform, message.message_info.user_info.user_id ) if not is_known: logger.info(f"首次认识用户: {message.message_info.user_info.user_nickname}") await relationship_manager.first_knowing_some_one( message.message_info.platform, message.message_info.user_info.user_id, message.message_info.user_info.user_nickname, message.message_info.user_info.user_cardname or message.message_info.user_info.user_nickname, "", ) else: # logger.debug(f"已认识用户: {message.message_info.user_info.user_nickname}") if not await relationship_manager.is_qved_name( message.message_info.platform, message.message_info.user_info.user_id ): logger.info(f"更新已认识但未取名的用户: {message.message_info.user_info.user_nickname}") await relationship_manager.first_knowing_some_one( message.message_info.platform, message.message_info.user_info.user_id, message.message_info.user_info.user_nickname, message.message_info.user_info.user_cardname or message.message_info.user_info.user_nickname, "", ) except Exception as e: logger.error(f"处理认识关系失败: {e}") logger.error(traceback.format_exc()) except Exception as e: logger.error(f"消息处理失败 (process_message V3): {e}") logger.error(traceback.format_exc()) if message: # 记录失败的消息内容 logger.error(f"失败消息原始内容: {message.raw_message}") def _check_ban_words(self, text: str, chat, userinfo) -> bool: """检查消息中是否包含过滤词""" for word in global_config.ban_words: if word in text: logger.info( f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}" ) logger.info(f"[过滤词识别]消息中含有{word},filtered") return True return False def _check_ban_regex(self, text: str, chat, userinfo) -> bool: """检查消息是否匹配过滤正则表达式""" for pattern in global_config.ban_msgs_regex: if pattern.search(text): logger.info( f"[{chat.group_info.group_name if chat.group_info else '私聊'}]{userinfo.user_nickname}:{text}" ) logger.info(f"[正则表达式过滤]消息匹配到{pattern},filtered") return True return False