mirror of https://github.com/Mai-with-u/MaiBot.git
341 lines
8.9 KiB
Markdown
341 lines
8.9 KiB
Markdown
# 回复生成器API
|
||
|
||
回复生成器API模块提供智能回复生成功能,让插件能够使用系统的回复生成器来产生自然的聊天回复。
|
||
|
||
## 导入方式
|
||
|
||
```python
|
||
from src.plugin_system.apis import generator_api
|
||
```
|
||
|
||
## 主要功能
|
||
|
||
### 1. 回复器获取
|
||
|
||
#### `get_replyer(chat_stream=None, platform=None, chat_id=None, is_group=True)`
|
||
获取回复器对象
|
||
|
||
**参数:**
|
||
- `chat_stream`:聊天流对象(优先)
|
||
- `platform`:平台名称,如"qq"
|
||
- `chat_id`:聊天ID(群ID或用户ID)
|
||
- `is_group`:是否为群聊
|
||
|
||
**返回:**
|
||
- `DefaultReplyer`:回复器对象,如果获取失败则返回None
|
||
|
||
**示例:**
|
||
```python
|
||
# 使用聊天流获取回复器
|
||
replyer = generator_api.get_replyer(chat_stream=chat_stream)
|
||
|
||
# 使用平台和ID获取回复器
|
||
replyer = generator_api.get_replyer(
|
||
platform="qq",
|
||
chat_id="123456789",
|
||
is_group=True
|
||
)
|
||
```
|
||
|
||
### 2. 回复生成
|
||
|
||
#### `generate_reply(chat_stream=None, action_data=None, platform=None, chat_id=None, is_group=True)`
|
||
生成回复
|
||
|
||
**参数:**
|
||
- `chat_stream`:聊天流对象(优先)
|
||
- `action_data`:动作数据
|
||
- `platform`:平台名称(备用)
|
||
- `chat_id`:聊天ID(备用)
|
||
- `is_group`:是否为群聊(备用)
|
||
|
||
**返回:**
|
||
- `Tuple[bool, List[Tuple[str, Any]]]`:(是否成功, 回复集合)
|
||
|
||
**示例:**
|
||
```python
|
||
success, reply_set = await generator_api.generate_reply(
|
||
chat_stream=chat_stream,
|
||
action_data={"message": "你好", "intent": "greeting"}
|
||
)
|
||
|
||
if success:
|
||
for reply_type, reply_content in reply_set:
|
||
print(f"回复类型: {reply_type}, 内容: {reply_content}")
|
||
```
|
||
|
||
#### `rewrite_reply(chat_stream=None, reply_data=None, platform=None, chat_id=None, is_group=True)`
|
||
重写回复
|
||
|
||
**参数:**
|
||
- `chat_stream`:聊天流对象(优先)
|
||
- `reply_data`:回复数据
|
||
- `platform`:平台名称(备用)
|
||
- `chat_id`:聊天ID(备用)
|
||
- `is_group`:是否为群聊(备用)
|
||
|
||
**返回:**
|
||
- `Tuple[bool, List[Tuple[str, Any]]]`:(是否成功, 回复集合)
|
||
|
||
**示例:**
|
||
```python
|
||
success, reply_set = await generator_api.rewrite_reply(
|
||
chat_stream=chat_stream,
|
||
reply_data={"original_text": "原始回复", "style": "more_friendly"}
|
||
)
|
||
```
|
||
|
||
## 使用示例
|
||
|
||
### 1. 基础回复生成
|
||
|
||
```python
|
||
from src.plugin_system.apis import generator_api
|
||
|
||
async def generate_greeting_reply(chat_stream, user_name):
|
||
"""生成问候回复"""
|
||
|
||
action_data = {
|
||
"intent": "greeting",
|
||
"user_name": user_name,
|
||
"context": "morning_greeting"
|
||
}
|
||
|
||
success, reply_set = await generator_api.generate_reply(
|
||
chat_stream=chat_stream,
|
||
action_data=action_data
|
||
)
|
||
|
||
if success and reply_set:
|
||
# 获取第一个回复
|
||
reply_type, reply_content = reply_set[0]
|
||
return reply_content
|
||
|
||
return "你好!" # 默认回复
|
||
```
|
||
|
||
### 2. 在Action中使用回复生成器
|
||
|
||
```python
|
||
from src.plugin_system.base import BaseAction
|
||
|
||
class ChatAction(BaseAction):
|
||
async def execute(self, action_data, chat_stream):
|
||
# 准备回复数据
|
||
reply_context = {
|
||
"message_type": "response",
|
||
"user_input": action_data.get("user_message", ""),
|
||
"intent": action_data.get("intent", ""),
|
||
"entities": action_data.get("entities", {}),
|
||
"context": self.get_conversation_context(chat_stream)
|
||
}
|
||
|
||
# 生成回复
|
||
success, reply_set = await generator_api.generate_reply(
|
||
chat_stream=chat_stream,
|
||
action_data=reply_context
|
||
)
|
||
|
||
if success:
|
||
return {
|
||
"success": True,
|
||
"replies": reply_set,
|
||
"generated_count": len(reply_set)
|
||
}
|
||
|
||
return {
|
||
"success": False,
|
||
"error": "回复生成失败",
|
||
"fallback_reply": "抱歉,我现在无法理解您的消息。"
|
||
}
|
||
```
|
||
|
||
### 3. 多样化回复生成
|
||
|
||
```python
|
||
async def generate_diverse_replies(chat_stream, topic, count=3):
|
||
"""生成多个不同风格的回复"""
|
||
|
||
styles = ["formal", "casual", "humorous"]
|
||
all_replies = []
|
||
|
||
for i, style in enumerate(styles[:count]):
|
||
action_data = {
|
||
"topic": topic,
|
||
"style": style,
|
||
"variation": i
|
||
}
|
||
|
||
success, reply_set = await generator_api.generate_reply(
|
||
chat_stream=chat_stream,
|
||
action_data=action_data
|
||
)
|
||
|
||
if success and reply_set:
|
||
all_replies.extend(reply_set)
|
||
|
||
return all_replies
|
||
```
|
||
|
||
### 4. 回复重写功能
|
||
|
||
```python
|
||
async def improve_reply(chat_stream, original_reply, improvement_type="more_friendly"):
|
||
"""改进原始回复"""
|
||
|
||
reply_data = {
|
||
"original_text": original_reply,
|
||
"improvement_type": improvement_type,
|
||
"target_audience": "young_users",
|
||
"tone": "positive"
|
||
}
|
||
|
||
success, improved_replies = await generator_api.rewrite_reply(
|
||
chat_stream=chat_stream,
|
||
reply_data=reply_data
|
||
)
|
||
|
||
if success and improved_replies:
|
||
# 返回改进后的第一个回复
|
||
_, improved_content = improved_replies[0]
|
||
return improved_content
|
||
|
||
return original_reply # 如果改进失败,返回原始回复
|
||
```
|
||
|
||
### 5. 条件回复生成
|
||
|
||
```python
|
||
async def conditional_reply_generation(chat_stream, user_message, user_emotion):
|
||
"""根据用户情感生成条件回复"""
|
||
|
||
# 根据情感调整回复策略
|
||
if user_emotion == "sad":
|
||
action_data = {
|
||
"intent": "comfort",
|
||
"tone": "empathetic",
|
||
"style": "supportive"
|
||
}
|
||
elif user_emotion == "angry":
|
||
action_data = {
|
||
"intent": "calm",
|
||
"tone": "peaceful",
|
||
"style": "understanding"
|
||
}
|
||
else:
|
||
action_data = {
|
||
"intent": "respond",
|
||
"tone": "neutral",
|
||
"style": "helpful"
|
||
}
|
||
|
||
action_data["user_message"] = user_message
|
||
action_data["user_emotion"] = user_emotion
|
||
|
||
success, reply_set = await generator_api.generate_reply(
|
||
chat_stream=chat_stream,
|
||
action_data=action_data
|
||
)
|
||
|
||
return reply_set if success else []
|
||
```
|
||
|
||
## 回复集合格式
|
||
|
||
### 回复类型
|
||
生成的回复集合包含多种类型的回复:
|
||
|
||
- `"text"`:纯文本回复
|
||
- `"emoji"`:表情包回复
|
||
- `"image"`:图片回复
|
||
- `"mixed"`:混合类型回复
|
||
|
||
### 回复集合结构
|
||
```python
|
||
# 示例回复集合
|
||
reply_set = [
|
||
("text", "很高兴见到你!"),
|
||
("emoji", "emoji_base64_data"),
|
||
("text", "有什么可以帮助你的吗?")
|
||
]
|
||
```
|
||
|
||
## 高级用法
|
||
|
||
### 1. 自定义回复器配置
|
||
|
||
```python
|
||
async def generate_with_custom_config(chat_stream, action_data):
|
||
"""使用自定义配置生成回复"""
|
||
|
||
# 获取回复器
|
||
replyer = generator_api.get_replyer(chat_stream=chat_stream)
|
||
|
||
if replyer:
|
||
# 可以访问回复器的内部方法
|
||
success, reply_set = await replyer.generate_reply_with_context(
|
||
reply_data=action_data,
|
||
# 可以传递额外的配置参数
|
||
)
|
||
return success, reply_set
|
||
|
||
return False, []
|
||
```
|
||
|
||
### 2. 回复质量评估
|
||
|
||
```python
|
||
async def generate_and_evaluate_replies(chat_stream, action_data):
|
||
"""生成回复并评估质量"""
|
||
|
||
success, reply_set = await generator_api.generate_reply(
|
||
chat_stream=chat_stream,
|
||
action_data=action_data
|
||
)
|
||
|
||
if success:
|
||
evaluated_replies = []
|
||
for reply_type, reply_content in reply_set:
|
||
# 简单的质量评估
|
||
quality_score = evaluate_reply_quality(reply_content)
|
||
evaluated_replies.append({
|
||
"type": reply_type,
|
||
"content": reply_content,
|
||
"quality": quality_score
|
||
})
|
||
|
||
# 按质量排序
|
||
evaluated_replies.sort(key=lambda x: x["quality"], reverse=True)
|
||
return evaluated_replies
|
||
|
||
return []
|
||
|
||
def evaluate_reply_quality(reply_content):
|
||
"""简单的回复质量评估"""
|
||
if not reply_content:
|
||
return 0
|
||
|
||
score = 50 # 基础分
|
||
|
||
# 长度适中加分
|
||
if 5 <= len(reply_content) <= 100:
|
||
score += 20
|
||
|
||
# 包含积极词汇加分
|
||
positive_words = ["好", "棒", "不错", "感谢", "开心"]
|
||
for word in positive_words:
|
||
if word in reply_content:
|
||
score += 10
|
||
break
|
||
|
||
return min(score, 100)
|
||
```
|
||
|
||
## 注意事项
|
||
|
||
1. **异步操作**:所有生成函数都是异步的,必须使用`await`
|
||
2. **错误处理**:函数内置错误处理,失败时返回False和空列表
|
||
3. **聊天流依赖**:需要有效的聊天流对象才能正常工作
|
||
4. **性能考虑**:回复生成可能需要一些时间,特别是使用LLM时
|
||
5. **回复格式**:返回的回复集合是元组列表,包含类型和内容
|
||
6. **上下文感知**:生成器会考虑聊天上下文和历史消息 |