mirror of https://github.com/Mai-with-u/MaiBot.git
feat:添加术语推断和术语理解
parent
69a6116b2a
commit
a8f4863d2f
|
|
@ -358,6 +358,9 @@ class Jargon(BaseModel):
|
|||
chat_id = TextField(index=True)
|
||||
is_global = BooleanField(default=False)
|
||||
count = IntegerField(default=0)
|
||||
is_jargon = BooleanField(null=True) # None表示未判定,True表示是黑话,False表示不是黑话
|
||||
last_inference_count = IntegerField(null=True) # 最后一次判定的count值,用于避免重启后重复判定
|
||||
is_complete = BooleanField(default=False) # 是否已完成所有推断(count>=100后不再推断)
|
||||
|
||||
class Meta:
|
||||
table_name = "jargon"
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
import time
|
||||
import json
|
||||
import asyncio
|
||||
from typing import List
|
||||
from json_repair import repair_json
|
||||
|
||||
|
|
@ -26,20 +27,22 @@ def _init_prompt() -> None:
|
|||
请从上面这段聊天内容中提取"可能是黑话"的候选项(黑话/俚语/网络缩写/口头禅)。
|
||||
- 必须为对话中真实出现过的短词或短语
|
||||
- 必须是你无法理解含义的词语,或者出现频率较高的词语
|
||||
- 必须是这几种类别之一:英文或中文缩写、中文拼音短语、字母数字混合、意义不明但频繁的词汇
|
||||
- 请不要选择有明确含义,或者含义清晰的词语
|
||||
- 必须是这几种类别之一:英文或中文缩写、中文拼音短语、字母数字混合
|
||||
- 排除:人名、@、明显的表情/图片占位、纯标点、常规功能词(如的、了、呢、啊等)
|
||||
- 每个词条长度建议 2-8 个字符(不强制),尽量短小
|
||||
- 合并重复项,去重
|
||||
|
||||
分类规则:
|
||||
- p(拼音缩写):由字母或字母和汉字构成的,疑似拼音简写词,例如:nb、yyds、xswl
|
||||
分类规则,type必须根据规则填写:
|
||||
- p(拼音缩写):由字母或字母和汉字构成的,用汉语拼音简写词,或汉语拼音首字母的简写词,例如:nb、yyds、xswl
|
||||
- c(中文缩写):中文词语的缩写,用几个汉字概括一个词汇或含义,例如:社死、内卷
|
||||
- e(英文缩写):英文词语的缩写,用英文字母概括一个词汇或含义,例如:CPU、GPU、API
|
||||
- x(谐音梗):谐音梗,用谐音词概括一个词汇或含义,例如:好似,难崩
|
||||
|
||||
以 JSON 数组输出,元素为对象(严格按以下结构):
|
||||
[
|
||||
{{"content": "词条", "raw_content": "包含该词条的完整句子", "type": "p"}},
|
||||
{{"content": "词条2", "raw_content": "包含该词条的完整句子", "type": "c"}}
|
||||
{{"content": "词条", "raw_content": "包含该词条的完整对话原文", "type": "p"}},
|
||||
{{"content": "词条2", "raw_content": "包含该词条的完整对话原文", "type": "c"}}
|
||||
]
|
||||
|
||||
现在请输出:
|
||||
|
|
@ -47,7 +50,107 @@ def _init_prompt() -> None:
|
|||
Prompt(prompt_str, "extract_jargon_prompt")
|
||||
|
||||
|
||||
def _init_inference_prompts() -> None:
|
||||
"""初始化含义推断相关的prompt"""
|
||||
# Prompt 1: 基于raw_content和content推断
|
||||
prompt1_str = """
|
||||
**词条内容**
|
||||
{content}
|
||||
|
||||
**词条出现的上下文(raw_content)**
|
||||
{raw_content_list}
|
||||
|
||||
请根据以上词条内容和上下文,推断这个词条的含义。
|
||||
- 如果这是一个黑话、俚语或网络用语,请推断其含义和翻译
|
||||
- 如果含义明确(常规词汇),也请说明
|
||||
|
||||
以 JSON 格式输出:
|
||||
{{
|
||||
"meaning": "含义说明",
|
||||
"translation": "翻译或解释"
|
||||
}}
|
||||
"""
|
||||
Prompt(prompt1_str, "jargon_inference_with_context_prompt")
|
||||
|
||||
# Prompt 2: 仅基于content推断
|
||||
prompt2_str = """
|
||||
**词条内容**
|
||||
{content}
|
||||
|
||||
请仅根据这个词条本身,推断其含义。
|
||||
- 如果这是一个黑话、俚语或网络用语,请推断其含义和翻译
|
||||
- 如果含义明确(常规词汇),也请说明
|
||||
|
||||
以 JSON 格式输出:
|
||||
{{
|
||||
"meaning": "含义说明",
|
||||
"translation": "翻译或解释"
|
||||
}}
|
||||
"""
|
||||
Prompt(prompt2_str, "jargon_inference_content_only_prompt")
|
||||
|
||||
# Prompt 3: 比较两个推断结果
|
||||
prompt3_str = """
|
||||
**推断结果1(基于上下文)**
|
||||
{inference1}
|
||||
|
||||
**推断结果2(仅基于词条)**
|
||||
{inference2}
|
||||
|
||||
请比较这两个推断结果,判断它们是否相同或类似。
|
||||
- 如果两个推断结果的"含义"相同或类似,说明这个词条不是黑话(含义明确)
|
||||
- 如果两个推断结果有差异,说明这个词条可能是黑话(需要上下文才能理解)
|
||||
|
||||
以 JSON 格式输出:
|
||||
{{
|
||||
"is_similar": true/false,
|
||||
"reason": "判断理由"
|
||||
}}
|
||||
"""
|
||||
Prompt(prompt3_str, "jargon_compare_inference_prompt")
|
||||
|
||||
|
||||
_init_prompt()
|
||||
_init_inference_prompts()
|
||||
|
||||
|
||||
def _should_infer_meaning(jargon_obj: Jargon) -> bool:
|
||||
"""
|
||||
判断是否需要进行含义推断
|
||||
在 count 达到 5, 10, 20, 40, 60, 100 时进行推断
|
||||
并且count必须大于last_inference_count,避免重启后重复判定
|
||||
如果is_complete为True,不再进行推断
|
||||
"""
|
||||
# 如果已完成所有推断,不再推断
|
||||
if jargon_obj.is_complete:
|
||||
return False
|
||||
|
||||
count = jargon_obj.count or 0
|
||||
last_inference = jargon_obj.last_inference_count or 0
|
||||
|
||||
# 阈值列表:5, 10, 20, 40, 60, 100
|
||||
thresholds = [5, 10, 20, 40, 60, 100]
|
||||
|
||||
if count < thresholds[0]:
|
||||
return False
|
||||
|
||||
# 如果count没有超过上次判定值,不需要判定
|
||||
if count <= last_inference:
|
||||
return False
|
||||
|
||||
# 找到第一个大于last_inference的阈值
|
||||
next_threshold = None
|
||||
for threshold in thresholds:
|
||||
if threshold > last_inference:
|
||||
next_threshold = threshold
|
||||
break
|
||||
|
||||
# 如果没有找到下一个阈值,说明已经超过100,不应该再推断
|
||||
if next_threshold is None:
|
||||
return False
|
||||
|
||||
# 检查count是否达到或超过这个阈值
|
||||
return count >= next_threshold
|
||||
|
||||
|
||||
class JargonMiner:
|
||||
|
|
@ -63,6 +166,162 @@ class JargonMiner:
|
|||
request_type="jargon.extract",
|
||||
)
|
||||
|
||||
async def _infer_meaning_by_id(self, jargon_id: int) -> None:
|
||||
"""通过ID加载对象并推断"""
|
||||
try:
|
||||
jargon_obj = Jargon.get_by_id(jargon_id)
|
||||
# 再次检查is_complete,因为可能在异步任务执行时已被标记为完成
|
||||
if jargon_obj.is_complete:
|
||||
logger.debug(f"jargon {jargon_obj.content} 已完成所有推断,跳过")
|
||||
return
|
||||
await self.infer_meaning(jargon_obj)
|
||||
except Exception as e:
|
||||
logger.error(f"通过ID推断jargon失败: {e}")
|
||||
|
||||
async def infer_meaning(self, jargon_obj: Jargon) -> None:
|
||||
"""
|
||||
对jargon进行含义推断
|
||||
"""
|
||||
try:
|
||||
content = jargon_obj.content
|
||||
raw_content_str = jargon_obj.raw_content or ""
|
||||
|
||||
# 解析raw_content列表
|
||||
raw_content_list = []
|
||||
if raw_content_str:
|
||||
try:
|
||||
raw_content_list = json.loads(raw_content_str) if isinstance(raw_content_str, str) else raw_content_str
|
||||
if not isinstance(raw_content_list, list):
|
||||
raw_content_list = [raw_content_list] if raw_content_list else []
|
||||
except (json.JSONDecodeError, TypeError):
|
||||
raw_content_list = [raw_content_str] if raw_content_str else []
|
||||
|
||||
if not raw_content_list:
|
||||
logger.warning(f"jargon {content} 没有raw_content,跳过推断")
|
||||
return
|
||||
|
||||
# 步骤1: 基于raw_content和content推断
|
||||
raw_content_text = "\n".join(raw_content_list)
|
||||
prompt1 = await global_prompt_manager.format_prompt(
|
||||
"jargon_inference_with_context_prompt",
|
||||
content=content,
|
||||
raw_content_list=raw_content_text,
|
||||
)
|
||||
|
||||
response1, _ = await self.llm.generate_response_async(prompt1, temperature=0.3)
|
||||
if not response1:
|
||||
logger.warning(f"jargon {content} 推断1失败:无响应")
|
||||
return
|
||||
|
||||
# 解析推断1结果
|
||||
inference1 = None
|
||||
try:
|
||||
resp1 = response1.strip()
|
||||
if resp1.startswith("{") and resp1.endswith("}"):
|
||||
inference1 = json.loads(resp1)
|
||||
else:
|
||||
repaired = repair_json(resp1)
|
||||
inference1 = json.loads(repaired) if isinstance(repaired, str) else repaired
|
||||
if not isinstance(inference1, dict):
|
||||
logger.warning(f"jargon {content} 推断1结果格式错误")
|
||||
return
|
||||
except Exception as e:
|
||||
logger.error(f"jargon {content} 推断1解析失败: {e}")
|
||||
return
|
||||
|
||||
# 步骤2: 仅基于content推断
|
||||
prompt2 = await global_prompt_manager.format_prompt(
|
||||
"jargon_inference_content_only_prompt",
|
||||
content=content,
|
||||
)
|
||||
|
||||
response2, _ = await self.llm.generate_response_async(prompt2, temperature=0.3)
|
||||
if not response2:
|
||||
logger.warning(f"jargon {content} 推断2失败:无响应")
|
||||
return
|
||||
|
||||
# 解析推断2结果
|
||||
inference2 = None
|
||||
try:
|
||||
resp2 = response2.strip()
|
||||
if resp2.startswith("{") and resp2.endswith("}"):
|
||||
inference2 = json.loads(resp2)
|
||||
else:
|
||||
repaired = repair_json(resp2)
|
||||
inference2 = json.loads(repaired) if isinstance(repaired, str) else repaired
|
||||
if not isinstance(inference2, dict):
|
||||
logger.warning(f"jargon {content} 推断2结果格式错误")
|
||||
return
|
||||
except Exception as e:
|
||||
logger.error(f"jargon {content} 推断2解析失败: {e}")
|
||||
return
|
||||
logger.info(f"jargon {content} 推断2提示词: {prompt2}")
|
||||
logger.info(f"jargon {content} 推断2结果: {response2}")
|
||||
# logger.info(f"jargon {content} 推断2结果: {inference2}")
|
||||
logger.info(f"jargon {content} 推断1提示词: {prompt1}")
|
||||
logger.info(f"jargon {content} 推断1结果: {response1}")
|
||||
# logger.info(f"jargon {content} 推断1结果: {inference1}")
|
||||
|
||||
# 步骤3: 比较两个推断结果
|
||||
prompt3 = await global_prompt_manager.format_prompt(
|
||||
"jargon_compare_inference_prompt",
|
||||
inference1=json.dumps(inference1, ensure_ascii=False),
|
||||
inference2=json.dumps(inference2, ensure_ascii=False),
|
||||
)
|
||||
|
||||
logger.info(f"jargon {content} 比较提示词: {prompt3}")
|
||||
|
||||
response3, _ = await self.llm.generate_response_async(prompt3, temperature=0.3)
|
||||
if not response3:
|
||||
logger.warning(f"jargon {content} 比较失败:无响应")
|
||||
return
|
||||
|
||||
# 解析比较结果
|
||||
comparison = None
|
||||
try:
|
||||
resp3 = response3.strip()
|
||||
if resp3.startswith("{") and resp3.endswith("}"):
|
||||
comparison = json.loads(resp3)
|
||||
else:
|
||||
repaired = repair_json(resp3)
|
||||
comparison = json.loads(repaired) if isinstance(repaired, str) else repaired
|
||||
if not isinstance(comparison, dict):
|
||||
logger.warning(f"jargon {content} 比较结果格式错误")
|
||||
return
|
||||
except Exception as e:
|
||||
logger.error(f"jargon {content} 比较解析失败: {e}")
|
||||
return
|
||||
|
||||
# 判断是否为黑话
|
||||
is_similar = comparison.get("is_similar", False)
|
||||
is_jargon = not is_similar # 如果相似,说明不是黑话;如果有差异,说明是黑话
|
||||
|
||||
# 更新数据库记录
|
||||
jargon_obj.is_jargon = is_jargon
|
||||
if is_jargon:
|
||||
# 是黑话,使用推断1的结果(基于上下文,更准确)
|
||||
jargon_obj.meaning = inference1.get("meaning", "")
|
||||
jargon_obj.translation = inference1.get("translation", "")
|
||||
else:
|
||||
# 不是黑话,也记录含义(使用推断2的结果,因为含义明确)
|
||||
jargon_obj.meaning = inference2.get("meaning", "")
|
||||
jargon_obj.translation = inference2.get("translation", "")
|
||||
|
||||
# 更新最后一次判定的count值,避免重启后重复判定
|
||||
jargon_obj.last_inference_count = jargon_obj.count or 0
|
||||
|
||||
# 如果count>=100,标记为完成,不再进行推断
|
||||
if (jargon_obj.count or 0) >= 100:
|
||||
jargon_obj.is_complete = True
|
||||
|
||||
jargon_obj.save()
|
||||
logger.info(f"jargon {content} 推断完成: is_jargon={is_jargon}, meaning={jargon_obj.meaning}, last_inference_count={jargon_obj.last_inference_count}, is_complete={jargon_obj.is_complete}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"jargon推断失败: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
def should_trigger(self) -> bool:
|
||||
# 冷却时间检查
|
||||
if time.time() - self.last_learning_time < self.min_learning_interval:
|
||||
|
|
@ -85,11 +344,15 @@ class JargonMiner:
|
|||
if not chat_stream:
|
||||
return
|
||||
|
||||
# 记录本次提取的时间窗口,避免重复提取
|
||||
extraction_start_time = self.last_learning_time
|
||||
extraction_end_time = time.time()
|
||||
|
||||
# 拉取学习窗口内的消息
|
||||
messages = get_raw_msg_by_timestamp_with_chat_inclusive(
|
||||
chat_id=self.chat_id,
|
||||
timestamp_start=self.last_learning_time,
|
||||
timestamp_end=time.time(),
|
||||
timestamp_start=extraction_start_time,
|
||||
timestamp_end=extraction_end_time,
|
||||
limit=20,
|
||||
)
|
||||
if not messages:
|
||||
|
|
@ -135,17 +398,27 @@ class JargonMiner:
|
|||
if not isinstance(item, dict):
|
||||
continue
|
||||
content = str(item.get("content", "")).strip()
|
||||
raw_content = str(item.get("raw_content", "")).strip()
|
||||
raw_content_value = item.get("raw_content", "")
|
||||
|
||||
# 处理raw_content:可能是字符串或列表
|
||||
raw_content_list = []
|
||||
if isinstance(raw_content_value, list):
|
||||
raw_content_list = [str(rc).strip() for rc in raw_content_value if str(rc).strip()]
|
||||
elif isinstance(raw_content_value, str):
|
||||
raw_content_str = raw_content_value.strip()
|
||||
if raw_content_str:
|
||||
raw_content_list = [raw_content_str]
|
||||
|
||||
type_str = str(item.get("type", "")).strip().lower()
|
||||
|
||||
# 验证type是否为有效值
|
||||
if type_str not in ["p", "c", "e"]:
|
||||
type_str = "p" # 默认值
|
||||
|
||||
if content:
|
||||
if content and raw_content_list:
|
||||
entries.append({
|
||||
"content": content,
|
||||
"raw_content": raw_content,
|
||||
"raw_content": raw_content_list,
|
||||
"type": type_str
|
||||
})
|
||||
except Exception as e:
|
||||
|
|
@ -167,14 +440,20 @@ class JargonMiner:
|
|||
|
||||
saved = 0
|
||||
updated = 0
|
||||
merged = 0
|
||||
for entry in uniq_entries:
|
||||
content = entry["content"]
|
||||
raw_content = entry["raw_content"]
|
||||
raw_content_list = entry["raw_content"] # 已经是列表
|
||||
type_str = entry["type"]
|
||||
try:
|
||||
# 步骤1: 检查同chat_id的记录,默认纳入global项目
|
||||
# 查询条件:chat_id匹配 OR (is_global为True且content匹配)
|
||||
query = (
|
||||
Jargon.select()
|
||||
.where((Jargon.chat_id == self.chat_id) & (Jargon.content == content))
|
||||
.where(
|
||||
((Jargon.chat_id == self.chat_id) | Jargon.is_global) &
|
||||
(Jargon.content == content)
|
||||
)
|
||||
)
|
||||
if query.exists():
|
||||
obj = query.get()
|
||||
|
|
@ -182,30 +461,134 @@ class JargonMiner:
|
|||
obj.count = (obj.count or 0) + 1
|
||||
except Exception:
|
||||
obj.count = 1
|
||||
# 更新raw_content和type(如果为空或需要更新)
|
||||
if raw_content and not obj.raw_content:
|
||||
obj.raw_content = raw_content
|
||||
|
||||
# 合并raw_content列表:读取现有列表,追加新值,去重
|
||||
existing_raw_content = []
|
||||
if obj.raw_content:
|
||||
try:
|
||||
existing_raw_content = json.loads(obj.raw_content) if isinstance(obj.raw_content, str) else obj.raw_content
|
||||
if not isinstance(existing_raw_content, list):
|
||||
existing_raw_content = [existing_raw_content] if existing_raw_content else []
|
||||
except (json.JSONDecodeError, TypeError):
|
||||
existing_raw_content = [obj.raw_content] if obj.raw_content else []
|
||||
|
||||
# 合并并去重
|
||||
merged_list = list(dict.fromkeys(existing_raw_content + raw_content_list))
|
||||
obj.raw_content = json.dumps(merged_list, ensure_ascii=False)
|
||||
|
||||
# 更新type(如果为空)
|
||||
if type_str and not obj.type:
|
||||
obj.type = type_str
|
||||
obj.save()
|
||||
|
||||
# 检查是否需要推断(达到阈值且超过上次判定值)
|
||||
if _should_infer_meaning(obj):
|
||||
# 异步触发推断,不阻塞主流程
|
||||
# 重新加载对象以确保数据最新
|
||||
jargon_id = obj.id
|
||||
asyncio.create_task(self._infer_meaning_by_id(jargon_id))
|
||||
|
||||
updated += 1
|
||||
else:
|
||||
Jargon.create(
|
||||
content=content,
|
||||
raw_content=raw_content,
|
||||
type=type_str,
|
||||
chat_id=self.chat_id,
|
||||
is_global=False,
|
||||
count=1
|
||||
# 步骤2: 同chat_id没有找到,检查所有chat_id中是否有相同content的记录
|
||||
# 查询所有非global的记录(global的已经在步骤1检查过了)
|
||||
all_content_query = (
|
||||
Jargon.select()
|
||||
.where(
|
||||
(Jargon.content == content) &
|
||||
(~Jargon.is_global)
|
||||
)
|
||||
)
|
||||
saved += 1
|
||||
all_matching = list(all_content_query)
|
||||
|
||||
# 如果找到3个或更多相同content的记录,合并它们
|
||||
if len(all_matching) >= 3:
|
||||
# 找到3个或更多已有记录,合并它们(新条目也会被包含在合并中)
|
||||
total_count = sum((obj.count or 0) for obj in all_matching) + 1 # +1 是因为当前新条目
|
||||
|
||||
# 合并所有raw_content列表
|
||||
all_raw_content = []
|
||||
for obj in all_matching:
|
||||
if obj.raw_content:
|
||||
try:
|
||||
obj_raw = json.loads(obj.raw_content) if isinstance(obj.raw_content, str) else obj.raw_content
|
||||
if not isinstance(obj_raw, list):
|
||||
obj_raw = [obj_raw] if obj_raw else []
|
||||
all_raw_content.extend(obj_raw)
|
||||
except (json.JSONDecodeError, TypeError):
|
||||
if obj.raw_content:
|
||||
all_raw_content.append(obj.raw_content)
|
||||
|
||||
# 添加当前新条目的raw_content
|
||||
all_raw_content.extend(raw_content_list)
|
||||
# 去重
|
||||
merged_raw_content = list(dict.fromkeys(all_raw_content))
|
||||
|
||||
# 合并type:优先使用非空的值
|
||||
merged_type = type_str
|
||||
for obj in all_matching:
|
||||
if obj.type and not merged_type:
|
||||
merged_type = obj.type
|
||||
break
|
||||
|
||||
# 合并其他字段:优先使用已有值
|
||||
merged_meaning = None
|
||||
merged_translation = None
|
||||
merged_is_jargon = None
|
||||
merged_last_inference_count = None
|
||||
merged_is_complete = False
|
||||
|
||||
for obj in all_matching:
|
||||
if obj.meaning and not merged_meaning:
|
||||
merged_meaning = obj.meaning
|
||||
if obj.translation and not merged_translation:
|
||||
merged_translation = obj.translation
|
||||
if obj.is_jargon is not None and merged_is_jargon is None:
|
||||
merged_is_jargon = obj.is_jargon
|
||||
if obj.last_inference_count is not None and merged_last_inference_count is None:
|
||||
merged_last_inference_count = obj.last_inference_count
|
||||
if obj.is_complete:
|
||||
merged_is_complete = True
|
||||
|
||||
# 删除旧的记录
|
||||
for obj in all_matching:
|
||||
obj.delete_instance()
|
||||
|
||||
# 创建新的global记录
|
||||
Jargon.create(
|
||||
content=content,
|
||||
raw_content=json.dumps(merged_raw_content, ensure_ascii=False),
|
||||
type=merged_type,
|
||||
chat_id="global",
|
||||
is_global=True,
|
||||
count=total_count,
|
||||
meaning=merged_meaning,
|
||||
translation=merged_translation,
|
||||
is_jargon=merged_is_jargon,
|
||||
last_inference_count=merged_last_inference_count,
|
||||
is_complete=merged_is_complete
|
||||
)
|
||||
merged += 1
|
||||
logger.info(f"合并jargon为global: content={content}, 合并了{len(all_matching)}条已有记录+1条新记录(共{len(all_matching)+1}条),总count={total_count}")
|
||||
else:
|
||||
# 找到少于3个已有记录,正常创建新记录
|
||||
Jargon.create(
|
||||
content=content,
|
||||
raw_content=json.dumps(raw_content_list, ensure_ascii=False),
|
||||
type=type_str,
|
||||
chat_id=self.chat_id,
|
||||
is_global=False,
|
||||
count=1
|
||||
)
|
||||
saved += 1
|
||||
except Exception as e:
|
||||
logger.error(f"保存jargon失败: chat_id={self.chat_id}, content={content}, err={e}")
|
||||
continue
|
||||
|
||||
if saved or updated:
|
||||
logger.info(f"jargon写入: 新增 {saved} 条,更新 {updated} 条,chat_id={self.chat_id}")
|
||||
self.last_learning_time = time.time()
|
||||
if saved or updated or merged:
|
||||
logger.info(f"jargon写入: 新增 {saved} 条,更新 {updated} 条,合并为global {merged} 条,chat_id={self.chat_id}")
|
||||
# 更新为本次提取的结束时间,确保不会重复提取相同的消息窗口
|
||||
self.last_learning_time = extraction_end_time
|
||||
except Exception as e:
|
||||
logger.error(f"JargonMiner 运行失败: {e}")
|
||||
|
||||
|
|
|
|||
|
|
@ -57,7 +57,7 @@ class BaseTool(ABC):
|
|||
Returns:
|
||||
dict: 工具定义字典
|
||||
"""
|
||||
if not cls.name or not cls.description or not cls.parameters:
|
||||
if not cls.name or not cls.description or cls.parameters is None:
|
||||
raise NotImplementedError(f"工具类 {cls.__name__} 必须定义 name, description 和 parameters 属性")
|
||||
|
||||
return {"name": cls.name, "description": cls.description, "parameters": cls.parameters}
|
||||
|
|
@ -65,7 +65,7 @@ class BaseTool(ABC):
|
|||
@classmethod
|
||||
def get_tool_info(cls) -> ToolInfo:
|
||||
"""获取工具信息"""
|
||||
if not cls.name or not cls.description or not cls.parameters:
|
||||
if not cls.name or not cls.description or cls.parameters is None:
|
||||
raise NotImplementedError(f"工具类 {cls.__name__} 必须定义 name, description 和 parameters 属性")
|
||||
|
||||
return ToolInfo(
|
||||
|
|
|
|||
|
|
@ -0,0 +1,36 @@
|
|||
{
|
||||
"manifest_version": 1,
|
||||
"name": "Jargon插件",
|
||||
"version": "1.0.0",
|
||||
"description": "记录和管理jargon(黑话/俚语)的解释",
|
||||
"author": {
|
||||
"name": "Mai",
|
||||
"url": "https://github.com/MaiM-with-u"
|
||||
},
|
||||
"license": "GPL-v3.0-or-later",
|
||||
|
||||
"host_application": {
|
||||
"min_version": "0.10.4"
|
||||
},
|
||||
"homepage_url": "https://github.com/MaiM-with-u/maibot",
|
||||
"repository_url": "https://github.com/MaiM-with-u/maibot",
|
||||
"keywords": ["jargon", "slang", "built-in"],
|
||||
"categories": ["Jargon"],
|
||||
|
||||
"default_locale": "zh-CN",
|
||||
"locales_path": "_locales",
|
||||
|
||||
"plugin_info": {
|
||||
"is_built_in": true,
|
||||
"plugin_type": "tool_provider",
|
||||
"components": [
|
||||
{
|
||||
"type": "record_jargon_explanation",
|
||||
"name": "record_jargon_explanation",
|
||||
"description": "记录聊天中明确解释的jargon词义"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,180 @@
|
|||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
from src.common.logger import get_logger
|
||||
from src.common.database.database_model import Jargon
|
||||
from src.plugin_system import BaseTool, ToolParamType
|
||||
|
||||
logger = get_logger("jargon_explanation")
|
||||
|
||||
|
||||
class RecordJargonExplanationTool(BaseTool):
|
||||
"""记录jargon解释工具
|
||||
|
||||
检测聊天记录中是否有对某个词义的明确解释,如果有则记录到jargon表中
|
||||
"""
|
||||
|
||||
name: str = "record_explanation"
|
||||
description: str = (
|
||||
"当检测到有人明确解释了某个缩写,拼音缩写,中文缩写,英文缩写的含义时(例如:'xxx是yyy的意思'、'xxx指的是yyy'等)"
|
||||
"当某人明确纠正了对某个词汇的错误解释时(例如:'xxx不是yyy的意思'、'xxx不是指的是yyy'等)"
|
||||
)
|
||||
parameters: List[Tuple[str, ToolParamType, str, bool, None]] = [
|
||||
("content", ToolParamType.STRING, "被解释的目标词汇(黑话/俚语/缩写),例如:yyds、内卷、社死等", True, None),
|
||||
("translation", ToolParamType.STRING, "词汇的翻译或简称,例如:永远的神、社会性死亡等", True, None),
|
||||
("meaning", ToolParamType.STRING, "词汇的详细含义说明", True, None),
|
||||
]
|
||||
available_for_llm: bool = True
|
||||
|
||||
async def execute(self, function_args: Dict[str, Any]) -> Dict[str, str]:
|
||||
"""执行jargon解释检测和记录
|
||||
|
||||
Args:
|
||||
function_args: 工具参数,包含content、translation、meaning
|
||||
|
||||
Returns:
|
||||
dict: 工具执行结果
|
||||
"""
|
||||
if not self.chat_id:
|
||||
return {"name": self.name, "content": "无法记录jargon解释:缺少chat_id"}
|
||||
|
||||
try:
|
||||
# 从参数中获取信息
|
||||
content = str(function_args.get("content", "")).strip()
|
||||
translation = str(function_args.get("translation", "")).strip()
|
||||
meaning = str(function_args.get("meaning", "")).strip()
|
||||
|
||||
if not content:
|
||||
return {"name": self.name, "content": "目标词汇不能为空"}
|
||||
|
||||
if not translation and not meaning:
|
||||
return {"name": self.name, "content": "翻译和含义至少需要提供一个"}
|
||||
|
||||
# 检查是否已存在相同的jargon
|
||||
query = Jargon.select().where(
|
||||
(Jargon.chat_id == self.chat_id) &
|
||||
(Jargon.content == content)
|
||||
)
|
||||
|
||||
if query.exists():
|
||||
# 已存在,更新translation和meaning(追加,用/分隔)
|
||||
obj = query.get()
|
||||
existing_translation = obj.translation or ""
|
||||
existing_meaning = obj.meaning or ""
|
||||
|
||||
# 追加新内容
|
||||
if translation:
|
||||
if existing_translation:
|
||||
obj.translation = f"{existing_translation}/{translation}"
|
||||
else:
|
||||
obj.translation = translation
|
||||
|
||||
if meaning:
|
||||
if existing_meaning:
|
||||
obj.meaning = f"{existing_meaning}/{meaning}"
|
||||
else:
|
||||
obj.meaning = meaning
|
||||
|
||||
# 确保is_jargon为True
|
||||
obj.is_jargon = True
|
||||
obj.save()
|
||||
|
||||
logger.info(f"更新jargon解释: {content}, translation={obj.translation}, meaning={obj.meaning}")
|
||||
# 优先使用meaning,如果没有则使用translation
|
||||
explanation = obj.meaning or obj.translation or ""
|
||||
return {"name": self.name, "content": f"你了解到 {content}的含义应该是 {explanation}"}
|
||||
else:
|
||||
# 新建记录
|
||||
Jargon.create(
|
||||
content=content,
|
||||
chat_id=self.chat_id,
|
||||
translation=translation,
|
||||
meaning=meaning,
|
||||
is_jargon=True,
|
||||
is_global=False,
|
||||
count=0,
|
||||
)
|
||||
|
||||
logger.info(f"记录新jargon解释: {content}, translation={translation}, meaning={meaning}")
|
||||
# 优先使用meaning,如果没有则使用translation
|
||||
explanation = meaning or translation or ""
|
||||
return {"name": self.name, "content": f"你了解到 {content}的含义应该是 {explanation}"}
|
||||
|
||||
except Exception as exc:
|
||||
logger.error(f"记录jargon解释失败: {exc}", exc_info=True)
|
||||
return {"name": self.name, "content": f"记录jargon解释失败: {exc}"}
|
||||
|
||||
|
||||
class LookupJargonMeaningTool(BaseTool):
|
||||
"""查询jargon含义工具
|
||||
|
||||
输入一个可能意义不明的词或缩写,查询数据库中是否已有匹配且带有含义或翻译的记录。
|
||||
命中则返回解释字符串(优先meaning,其次translation),未命中返回空字符串。
|
||||
"""
|
||||
|
||||
name: str = "lookup_jargon_meaning"
|
||||
description: str = (
|
||||
"查询是否存在已知的jargon解释(含meaning或translation),若存在返回解释,否则返回空字符串"
|
||||
)
|
||||
parameters: List[Tuple[str, ToolParamType, str, bool, None]] = [
|
||||
("content", ToolParamType.STRING, "待查询的目标词汇(黑话/俚语/缩写)", True, None),
|
||||
]
|
||||
available_for_llm: bool = True
|
||||
|
||||
async def execute(self, function_args: Dict[str, Any]) -> Dict[str, str]:
|
||||
if not self.chat_id:
|
||||
# 和其它工具保持一致的返回结构
|
||||
return {"name": self.name, "content": ""}
|
||||
|
||||
try:
|
||||
content = str(function_args.get("content", "")).strip()
|
||||
if not content:
|
||||
return {"name": self.name, "content": ""}
|
||||
|
||||
# 优先在当前会话或global中查找该content,且需要meaning或translation非空
|
||||
# Peewee 条件:
|
||||
# (content == 输入) AND ((chat_id == 当前chat) OR is_global) AND ((meaning非空) OR (translation非空))
|
||||
candidates = (
|
||||
Jargon.select()
|
||||
.where(
|
||||
(Jargon.content == content)
|
||||
& ((Jargon.chat_id == self.chat_id) | Jargon.is_global)
|
||||
& (
|
||||
((Jargon.meaning.is_null(False)) & (Jargon.meaning != ""))
|
||||
| ((Jargon.translation.is_null(False)) & (Jargon.translation != ""))
|
||||
)
|
||||
)
|
||||
.limit(1)
|
||||
)
|
||||
|
||||
if candidates.exists():
|
||||
obj = candidates.get()
|
||||
translation = (obj.translation or "").strip()
|
||||
meaning = (obj.meaning or "").strip()
|
||||
formatted = f"“{content}可能为黑话或者网络简写,翻译为:{translation},含义为:{meaning}”"
|
||||
return {"name": self.name, "content": formatted}
|
||||
|
||||
# 未命中:允许退化为全库搜索(不限chat_id),以提升命中率
|
||||
fallback = (
|
||||
Jargon.select()
|
||||
.where(
|
||||
(Jargon.content == content)
|
||||
& (
|
||||
((Jargon.meaning.is_null(False)) & (Jargon.meaning != ""))
|
||||
| ((Jargon.translation.is_null(False)) & (Jargon.translation != ""))
|
||||
)
|
||||
)
|
||||
.limit(1)
|
||||
)
|
||||
if fallback.exists():
|
||||
obj = fallback.get()
|
||||
translation = (obj.translation or "").strip()
|
||||
meaning = (obj.meaning or "").strip()
|
||||
formatted = f"“{content}可能为黑话或者网络简写,翻译为:{translation},含义为:{meaning}”"
|
||||
return {"name": self.name, "content": formatted}
|
||||
|
||||
# 彻底未命中
|
||||
return {"name": self.name, "content": ""}
|
||||
except Exception as exc:
|
||||
logger.error(f"查询jargon解释失败: {exc}", exc_info=True)
|
||||
return {"name": self.name, "content": ""}
|
||||
|
||||
|
|
@ -0,0 +1,56 @@
|
|||
from typing import List, Tuple, Type
|
||||
|
||||
# 导入新插件系统
|
||||
from src.plugin_system import BasePlugin, ComponentInfo, register_plugin
|
||||
from src.plugin_system.base.config_types import ConfigField
|
||||
|
||||
# 导入依赖的系统组件
|
||||
from src.common.logger import get_logger
|
||||
|
||||
from src.plugins.built_in.jargon.jargon_explanation import RecordJargonExplanationTool, LookupJargonMeaningTool
|
||||
|
||||
logger = get_logger("jargon_plugin")
|
||||
|
||||
|
||||
@register_plugin
|
||||
class JargonPlugin(BasePlugin):
|
||||
"""Jargon插件
|
||||
|
||||
系统内置插件,提供jargon相关的功能:
|
||||
- RecordJargonExplanation: 记录聊天中明确解释的jargon词义
|
||||
- LookupJargonMeaning: 查询未知词是否已有解释
|
||||
|
||||
注意:插件基本信息优先从_manifest.json文件中读取
|
||||
"""
|
||||
|
||||
# 插件基本信息
|
||||
plugin_name: str = "jargon" # 内部标识符
|
||||
enable_plugin: bool = True
|
||||
dependencies: list[str] = [] # 插件依赖列表
|
||||
python_dependencies: list[str] = [] # Python包依赖列表
|
||||
config_file_name: str = "config.toml"
|
||||
|
||||
# 配置节描述
|
||||
config_section_descriptions = {
|
||||
"plugin": "插件启用配置",
|
||||
"components": "核心组件启用配置",
|
||||
}
|
||||
|
||||
# 配置Schema定义
|
||||
config_schema: dict = {
|
||||
"plugin": {
|
||||
"enabled": ConfigField(type=bool, default=True, description="是否启用插件"),
|
||||
"config_version": ConfigField(type=str, default="1.0.0", description="配置文件版本"),
|
||||
},
|
||||
}
|
||||
|
||||
def get_plugin_components(self) -> List[Tuple[ComponentInfo, Type]]:
|
||||
"""返回插件包含的组件列表"""
|
||||
|
||||
# --- 根据配置注册组件 ---
|
||||
components = []
|
||||
components.append((RecordJargonExplanationTool.get_tool_info(), RecordJargonExplanationTool))
|
||||
components.append((LookupJargonMeaningTool.get_tool_info(), LookupJargonMeaningTool))
|
||||
|
||||
return components
|
||||
|
||||
Loading…
Reference in New Issue