MaiBot/src/plugin_system/base/base_tool.py

138 lines
5.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

from abc import ABC, abstractmethod
from typing import Any, List, Optional, Tuple, TYPE_CHECKING
from rich.traceback import install
from src.common.logger import get_logger
from src.plugin_system.base.component_types import ComponentType, ToolInfo, ToolParamType
if TYPE_CHECKING:
from src.chat.message_receive.chat_stream import ChatStream
install(extra_lines=3)
logger = get_logger("base_tool")
class BaseTool(ABC):
"""所有工具的基类"""
name: str = ""
"""工具的名称"""
description: str = ""
"""工具的描述"""
parameters: List[Tuple[str, ToolParamType, str, bool, List[str] | None]] = []
"""工具的参数定义,为[("param_name", param_type, "description", required, enum_values)]格式
param_name: 参数名称
param_type: 参数类型
description: 参数描述
required: 是否必填
enum_values: 枚举值列表
例如: [("arg1", ToolParamType.STRING, "参数1描述", True, None), ("arg2", ToolParamType.INTEGER, "参数2描述", False, ["1", "2", "3"])]
"""
available_for_llm: bool = False
"""是否可供LLM使用"""
def __init__(self, plugin_config: Optional[dict] = None, chat_stream: Optional["ChatStream"] = None):
"""初始化工具基类
Args:
plugin_config: 插件配置字典
chat_stream: 聊天流对象,用于获取聊天上下文信息
"""
self.plugin_config = plugin_config or {} # 直接存储插件配置字典
# =============================================================================
# 便捷属性 - 直接在初始化时获取常用聊天信息与BaseAction保持一致
# =============================================================================
# 获取聊天流对象
self.chat_stream = chat_stream
self.chat_id = self.chat_stream.stream_id if self.chat_stream else None
self.platform = getattr(self.chat_stream, "platform", None) if self.chat_stream else None
@classmethod
def get_tool_definition(cls) -> dict[str, Any]:
"""获取工具定义用于LLM工具调用
Returns:
dict: 工具定义字典
"""
if not cls.name or not cls.description or cls.parameters is None:
raise NotImplementedError(f"工具类 {cls.__name__} 必须定义 name, description 和 parameters 属性")
return {"name": cls.name, "description": cls.description, "parameters": cls.parameters}
@classmethod
def get_tool_info(cls) -> ToolInfo:
"""获取工具信息"""
if not cls.name or not cls.description or cls.parameters is None:
raise NotImplementedError(f"工具类 {cls.__name__} 必须定义 name, description 和 parameters 属性")
return ToolInfo(
name=cls.name,
tool_description=cls.description,
enabled=cls.available_for_llm,
tool_parameters=cls.parameters,
component_type=ComponentType.TOOL,
)
@abstractmethod
async def execute(self, function_args: dict[str, Any]) -> dict[str, Any]:
"""执行工具函数(供llm调用)
通过该方法maicore会通过llm的tool call来调用工具
传入的是json格式的参数符合parameters定义的格式
Args:
function_args: 工具调用参数
Returns:
dict: 工具执行结果
"""
raise NotImplementedError("子类必须实现execute方法")
async def direct_execute(self, **function_args: dict[str, Any]) -> dict[str, Any]:
"""直接执行工具函数(供插件调用)
通过该方法,插件可以直接调用工具,而不需要传入字典格式的参数
插件可以直接调用此方法,用更加明了的方式传入参数
示例: result = await tool.direct_execute(arg1="参数",arg2="参数2")
工具开发者可以重写此方法以实现与llm调用差异化的执行逻辑
Args:
**function_args: 工具调用参数
Returns:
dict: 工具执行结果
"""
parameter_required = [param[0] for param in self.parameters if param[3]] # 获取所有必填参数名
for param_name in parameter_required:
if param_name not in function_args:
raise ValueError(f"工具类 {self.__class__.__name__} 缺少必要参数: {param_name}")
return await self.execute(function_args)
def get_config(self, key: str, default=None):
"""获取插件配置值,使用嵌套键访问
Args:
key: 配置键名,使用嵌套访问如 "section.subsection.key"
default: 默认值
Returns:
Any: 配置值或默认值
"""
if not self.plugin_config:
return default
# 支持嵌套键访问
keys = key.split(".")
current = self.plugin_config
for k in keys:
if isinstance(current, dict) and k in current:
current = current[k]
else:
return default
return current