remove:移除问题跟踪和记忆整理

pull/1348/head
SengokuCola 2025-11-09 13:59:15 +08:00
parent 94405856ff
commit 82004567a6
4 changed files with 13 additions and 756 deletions

View File

@ -14,11 +14,13 @@ from src.plugin_system.apis.message_api import get_raw_msg_by_timestamp_with_cha
from json_repair import repair_json
from src.memory_system.questions import global_conflict_tracker
from .memory_utils import (
find_best_matching_memory,
check_title_exists_fuzzy,
get_all_titles,
find_most_similar_memory_by_chat_id,
compute_merge_similarity_threshold
)
@ -82,218 +84,6 @@ class MemoryChest:
except Exception as e:
logger.error(f"[记忆管理] 按年龄权重删除记忆时出错: {e}")
return False
def _compute_merge_similarity_threshold(self) -> float:
"""
根据当前记忆数量占比动态计算合并相似度阈值
规则占比越高阈值越低
- < 60%: 0.80更严格避免早期误合并
- < 80%: 0.70
- < 100%: 0.60
- < 120%: 0.50
- >= 120%: 0.45最宽松加速收敛
"""
try:
current_count = MemoryChestModel.select().count()
max_count = max(1, int(global_config.memory.max_memory_number))
percentage = current_count / max_count
if percentage < 0.6:
return 0.70
elif percentage < 0.8:
return 0.60
elif percentage < 1.0:
return 0.50
elif percentage < 1.5:
return 0.40
elif percentage < 2:
return 0.30
else:
return 0.25
except Exception:
# 发生异常时使用保守阈值
return 0.70
async def build_running_content(self, chat_id: str = None) -> str:
"""
构建记忆仓库的运行内容
Args:
message_str: 消息内容
chat_id: 聊天ID用于提取对应的运行内容
Returns:
str: 构建后的运行内容
"""
# 检查是否需要更新:基于消息数量和最新消息时间差的智能更新机制
#
# 更新机制说明:
# 1. 消息数量 > 100直接触发更新高频消息场景
# 2. 消息数量 > 70 且最新消息时间差 > 30秒触发更新中高频消息场景
# 3. 消息数量 > 50 且最新消息时间差 > 60秒触发更新中频消息场景
# 4. 消息数量 > 30 且最新消息时间差 > 300秒触发更新低频消息场景
#
# 设计理念:
# - 消息越密集,时间阈值越短,确保及时更新记忆
# - 消息越稀疏,时间阈值越长,避免频繁无意义的更新
# - 通过最新消息时间差判断消息活跃度,而非简单的总时间差
# - 平衡更新频率与性能,在保证记忆及时性的同时减少计算开销
if chat_id not in self.running_content_list:
self.running_content_list[chat_id] = {
"content": "",
"last_update_time": time.time(),
"create_time": time.time()
}
should_update = True
if chat_id and chat_id in self.running_content_list:
last_update_time = self.running_content_list[chat_id]["last_update_time"]
current_time = time.time()
# 使用message_api获取消息数量
message_list = get_raw_msg_by_timestamp_with_chat(
timestamp_start=last_update_time,
timestamp_end=current_time,
chat_id=chat_id,
limit=global_config.chat.max_context_size * 2,
)
new_messages_count = len(message_list)
# 获取最新消息的时间戳
latest_message_time = last_update_time
if message_list:
# 假设消息列表按时间排序,取最后一条消息的时间戳
latest_message = message_list[-1]
if hasattr(latest_message, 'timestamp'):
latest_message_time = latest_message.timestamp
elif isinstance(latest_message, dict) and 'timestamp' in latest_message:
latest_message_time = latest_message['timestamp']
# 计算最新消息时间与现在时间的差(秒)
latest_message_time_diff = current_time - latest_message_time
# 智能更新条件判断 - 按优先级从高到低检查
should_update = False
update_reason = ""
if global_config.memory.memory_build_frequency > 0:
if new_messages_count > 100/global_config.memory.memory_build_frequency:
# 条件1消息数量 > 100直接触发更新
# 适用场景:群聊刷屏、高频讨论等消息密集场景
# 无需时间限制,确保重要信息不被遗漏
should_update = True
update_reason = f"消息数量 {new_messages_count} > 100直接触发更新"
elif new_messages_count > 70/global_config.memory.memory_build_frequency and latest_message_time_diff > 30:
# 条件2消息数量 > 70 且最新消息时间差 > 30秒
# 适用场景:中高频讨论,但需要确保消息流已稳定
# 30秒的时间差确保不是正在进行的实时对话
should_update = True
update_reason = f"消息数量 {new_messages_count} > 70 且最新消息时间差 {latest_message_time_diff:.1f}s > 30s"
elif new_messages_count > 50/global_config.memory.memory_build_frequency and latest_message_time_diff > 60:
# 条件3消息数量 > 50 且最新消息时间差 > 60秒
# 适用场景中等频率讨论等待1分钟确保对话告一段落
# 平衡及时性与稳定性
should_update = True
update_reason = f"消息数量 {new_messages_count} > 50 且最新消息时间差 {latest_message_time_diff:.1f}s > 60s"
elif new_messages_count > 30/global_config.memory.memory_build_frequency and latest_message_time_diff > 300:
# 条件4消息数量 > 30 且最新消息时间差 > 300秒5分钟
# 适用场景:低频但有一定信息量的讨论
# 5分钟的时间差确保对话完全结束避免频繁更新
should_update = True
update_reason = f"消息数量 {new_messages_count} > 30 且最新消息时间差 {latest_message_time_diff:.1f}s > 300s"
logger.debug(f"chat_id {chat_id} 更新检查: {update_reason if should_update else f'消息数量 {new_messages_count},最新消息时间差 {latest_message_time_diff:.1f}s不满足更新条件'}")
if should_update:
# 如果有chat_id先提取对应的running_content
message_str = build_readable_messages(
message_list,
replace_bot_name=True,
timestamp_mode="relative",
read_mark=0.0,
show_actions=False,
remove_emoji_stickers=True,
)
# 随机从格式示例列表中选取若干行用于提示
format_candidates = [
"[概念] 是 [概念的含义(简短描述,不超过十个字)]",
"[概念] 不是 [对概念的负面含义(简短描述,不超过十个字)]",
"[概念1] 与 [概念2] 是 [概念1和概念2的关联(简短描述,不超过二十个字)]",
"[概念1] 包含 [概念2] 和 [概念3]",
"[概念1] 属于 [概念2]",
"[概念1] 的例子是 [例子1] 和 [例子2]",
"[概念] 的特征是 [特征1]、[特征2]",
"[概念1] 导致 [概念2]",
"[概念1] 需要 [条件1] 和 [条件2]",
"[概念1] 的用途是 [用途1] 和 [用途2]",
"[概念1] 与 [概念2] 的区别是 [区别点]",
"[概念] 的别名是 [别名]",
"[概念1] 包括但不限于 [概念2]、[概念3]",
"[概念] 的反义是 [反义概念]",
"[概念] 的组成有 [部分1]、[部分2]",
"[概念] 出现于 [时间或场景]",
"[概念] 的方法有 [方法1]、[方法2]",
]
selected_count = random.randint(3, 6)
selected_lines = random.sample(format_candidates, selected_count)
format_section = "\n".join(selected_lines) + "\n......(不要包含中括号)"
prompt = f"""
以下是一段你参与的聊天记录请你在其中总结出记忆
<聊天记录>
{message_str}
</聊天记录>
聊天记录中可能包含有效信息也可能信息密度很低请你根据聊天记录中的信息总结出记忆内容
--------------------------------
[图片]的处理
1.除非与文本有关不要将[图片]的内容整合到记忆中
2.如果图片与某个概念相关将图片中的关键内容也整合到记忆中不要写入图片原文例如
聊天记录与图片有关
用户说[图片1这是一个黄色的龙形状玩偶被一只手拿着]
用户说这个玩偶看起来很可爱是我新买的奶龙
总结的记忆内容
黄色的龙形状玩偶 奶龙
聊天记录概念与图片无关
用户说[图片1这是一个台电脑屏幕上显示了某种游戏]
用户说使命召唤今天发售了新一代有没有人玩
总结的记忆内容
使命召唤新一代 最新发售的游戏
请主要关注概念和知识或者时效性较强的信息而不是聊天的琐事
1.不要关注诸如某个用户做了什么说了什么不要关注某个用户的行为而是关注其中的概念性信息
2.概念要求精确不啰嗦像科普读物或教育课本那样
3.记忆为一段纯文本逻辑清晰指出概念的含义并说明关系
记忆内容的格式你必须仿照下面的格式但不一定全部使用:
{format_section}
请仿照上述格式输出每个知识点一句话输出成一段平文本
现在请你输出,不要输出其他内容注意一定要直白白话口语化不要浮夸修辞
"""
if global_config.debug.show_prompt:
logger.info(f"记忆仓库构建运行内容 prompt: {prompt}")
else:
logger.debug(f"记忆仓库构建运行内容 prompt: {prompt}")
running_content, (reasoning_content, model_name, tool_calls) = await self.LLMRequest_build.generate_response_async(prompt)
print(f"prompt: {prompt}\n记忆仓库构建运行内容: {running_content}")
# 直接保存:每次构建后立即入库,并刷新时间戳窗口
if chat_id and running_content:
await self._save_to_database_and_clear(chat_id, running_content)
return running_content
async def get_answer_by_question(self, chat_id: str = "", question: str = "") -> str:
"""
@ -521,7 +311,7 @@ class MemoryChest:
return [], []
# 动态计算相似度阈值(占比越高阈值越低)
dynamic_threshold = self._compute_merge_similarity_threshold()
dynamic_threshold = compute_merge_similarity_threshold()
# 使用相似度匹配查找最相似的记忆(基于动态阈值)
similar_memory = find_most_similar_memory_by_chat_id(

View File

@ -62,11 +62,7 @@ class CuriousDetector:
show_actions=True,
)
# 检查是否已经有问题在跟踪中
existing_questions = global_conflict_tracker.get_questions_by_chat_id(self.chat_id)
if len(existing_questions) > 0:
logger.debug(f"当前已有{len(existing_questions)}个问题在跟踪中,跳过检测")
return None
# 问题跟踪功能已移除,不再检查已有问题
# 构建检测提示词
prompt = f"""你是一个严谨的聊天内容分析器。请分析以下聊天记录,检测是否存在需要提问的内容。
@ -154,11 +150,10 @@ class CuriousDetector:
if not question or not question.strip():
return False
# 记录问题到冲突追踪器,并开始跟踪
await global_conflict_tracker.track_conflict(
question=question.strip(),
# 记录问题到冲突追踪器
await global_conflict_tracker.record_conflict(
conflict_content=question.strip(),
context=context,
start_following=False,
chat_id=self.chat_id
)

View File

@ -1,241 +0,0 @@
# -*- coding: utf-8 -*-
import asyncio
import random
import time
from typing import List
from src.manager.async_task_manager import AsyncTask
from src.memory_system.Memory_chest import global_memory_chest
from src.common.logger import get_logger
from src.common.database.database_model import MemoryChest as MemoryChestModel, MemoryConflict
from src.config.config import global_config
logger = get_logger("memory")
class MemoryManagementTask(AsyncTask):
"""记忆管理定时任务
根据Memory_chest中的记忆数量与MAX_MEMORY_NUMBER的比例来决定执行频率
- 小于50%每600秒执行一次
- 大于等于50%每300秒执行一次
每次执行时随机选择一个title执行choose_merge_target和merge_memory
然后删除原始记忆
"""
def __init__(self):
super().__init__(
task_name="Memory Management Task",
wait_before_start=10, # 启动后等待10秒再开始
run_interval=300 # 默认300秒间隔会根据记忆数量动态调整
)
self.max_memory_number = global_config.memory.max_memory_number
async def start_task(self, abort_flag: asyncio.Event):
"""重写start_task方法支持动态调整执行间隔"""
if self.wait_before_start > 0:
# 等待指定时间后开始任务
await asyncio.sleep(self.wait_before_start)
while not abort_flag.is_set():
await self.run()
# 动态调整执行间隔
current_interval = self._calculate_interval()
logger.info(f"[记忆管理] 下次执行间隔: {current_interval}")
if current_interval > 0:
await asyncio.sleep(current_interval)
else:
break
def _calculate_interval(self) -> int:
"""根据当前记忆数量计算执行间隔"""
try:
current_count = self._get_memory_count()
percentage = current_count / self.max_memory_number
if percentage < 0.6:
# 小于50%每600秒执行一次
return 3600
elif percentage < 1:
# 大于等于50%每300秒执行一次
return 1800
elif percentage < 1.5:
# 大于等于100%每120秒执行一次
return 600
elif percentage < 1.8:
return 120
else:
return 30
except Exception as e:
logger.error(f"[记忆管理] 计算执行间隔时出错: {e}")
return 300 # 默认300秒
def _get_memory_count(self) -> int:
"""获取当前记忆数量"""
try:
count = MemoryChestModel.select().count()
logger.debug(f"[记忆管理] 当前记忆数量: {count}")
return count
except Exception as e:
logger.error(f"[记忆管理] 获取记忆数量时出错: {e}")
return 0
async def run(self):
"""执行记忆管理任务"""
try:
# 获取当前记忆数量
current_count = self._get_memory_count()
percentage = current_count / self.max_memory_number
logger.info(f"当前记忆数量: {current_count}/{self.max_memory_number} ({percentage:.1%})")
# 当占比 > 1.6 时,持续删除直到占比 <= 1.6(越老/越新更易被删)
if percentage > 2:
logger.info("记忆过多,开始遗忘记忆")
while True:
if percentage <= 1.8:
break
removed = global_memory_chest.remove_one_memory_by_age_weight()
if not removed:
logger.warning("没有可删除的记忆,停止连续删除")
break
# 重新计算占比
current_count = self._get_memory_count()
percentage = current_count / self.max_memory_number
logger.info(f"遗忘进度: 当前 {current_count}/{self.max_memory_number} ({percentage:.1%})")
logger.info("遗忘记忆结束")
# 如果记忆数量为0跳过执行
if current_count < 10:
return
# 随机选择一个记忆标题和chat_id
selected_title, selected_chat_id = self._get_random_memory_title()
if not selected_title:
logger.warning("无法获取随机记忆标题,跳过执行")
return
# 执行choose_merge_target获取相关记忆标题与内容
related_titles, related_contents = await global_memory_chest.choose_merge_target(selected_title, selected_chat_id)
if not related_titles or not related_contents:
logger.info("无合适合并内容,跳过本次合并")
return
logger.info(f"{selected_chat_id} 为 [{selected_title}] 找到 {len(related_contents)} 条相关记忆:{related_titles}")
# 执行merge_memory合并记忆
merged_title, merged_content = await global_memory_chest.merge_memory(related_contents,selected_chat_id)
if not merged_title or not merged_content:
logger.warning("[记忆管理] 记忆合并失败,跳过删除")
return
logger.info(f"记忆合并成功,新标题: {merged_title}")
# 删除原始记忆(包括选中的标题和相关的记忆标题)
titles_to_delete = [selected_title] + related_titles
deleted_count = self._delete_original_memories(titles_to_delete)
logger.info(f"已删除 {deleted_count} 条原始记忆")
except Exception as e:
logger.error(f"[记忆管理] 执行记忆管理任务时发生错误: {e}", exc_info=True)
def _get_random_memory_title(self) -> tuple[str, str]:
"""随机获取一个记忆标题和对应的chat_id"""
try:
# 获取所有记忆记录
all_memories = MemoryChestModel.select()
if not all_memories:
return "", ""
# 随机选择一个记忆
selected_memory = random.choice(list(all_memories))
return selected_memory.title, selected_memory.chat_id or ""
except Exception as e:
logger.error(f"[记忆管理] 获取随机记忆标题时发生错误: {e}")
return "", ""
def _delete_original_memories(self, related_titles: List[str]) -> int:
"""按标题删除原始记忆"""
try:
deleted_count = 0
# 删除相关记忆(通过标题匹配)
for title in related_titles:
try:
# 通过标题查找并删除对应的记忆
memories_to_delete = MemoryChestModel.select().where(MemoryChestModel.title == title)
for memory in memories_to_delete:
MemoryChestModel.delete().where(MemoryChestModel.id == memory.id).execute()
deleted_count += 1
logger.debug(f"[记忆管理] 删除相关记忆: {memory.title}")
except Exception as e:
logger.error(f"[记忆管理] 删除相关记忆时出错: {e}")
continue
return deleted_count
except Exception as e:
logger.error(f"[记忆管理] 删除原始记忆时发生错误: {e}")
return 0
class MemoryConflictCleanupTask(AsyncTask):
"""记忆冲突清理定时任务
定期清理 memory_conflicts 表中 create_time 较早7天前 answer 为空的项目
默认每小时执行一次
"""
def __init__(self, cleanup_days: int = 7, run_interval: int = 3600):
"""
初始化清理任务
Args:
cleanup_days: 清理多少天前的记录默认7天
run_interval: 执行间隔默认3600秒1小时
"""
super().__init__(
task_name="Memory Conflict Cleanup Task",
wait_before_start=60, # 启动后等待60秒再开始
run_interval=run_interval
)
self.cleanup_days = cleanup_days
async def run(self):
"""执行清理任务"""
try:
current_time = time.time()
# 计算7天前的时间戳
cutoff_time = current_time - (self.cleanup_days * 24 * 60 * 60)
logger.info(f"[冲突清理] 开始清理 {self.cleanup_days} 天前且 answer 为空的冲突记录(截止时间: {cutoff_time}")
# 查询需要清理的记录create_time < cutoff_time 且 answer 为空
# answer 为空的条件answer IS NULL 或 answer == ''
query = MemoryConflict.select().where(
(MemoryConflict.create_time < cutoff_time) &
((MemoryConflict.answer.is_null()) | (MemoryConflict.answer == ''))
)
# 先统计要删除的数量
deleted_count = query.count()
# 批量删除
if deleted_count > 0:
deleted = MemoryConflict.delete().where(
(MemoryConflict.create_time < cutoff_time) &
((MemoryConflict.answer.is_null()) | (MemoryConflict.answer == ''))
).execute()
deleted_count = deleted
if deleted_count > 0:
logger.info(f"[冲突清理] 成功清理 {deleted_count} 条过期且未回答的冲突记录")
else:
logger.debug("[冲突清理] 没有需要清理的记录")
except Exception as e:
logger.error(f"[冲突清理] 执行清理任务时发生错误: {e}", exc_info=True)

View File

@ -1,120 +1,12 @@
import time
import asyncio
from src.common.logger import get_logger
from src.common.database.database_model import MemoryConflict
from src.chat.utils.chat_message_builder import (
get_raw_msg_by_timestamp_with_chat,
build_readable_messages,
)
from src.llm_models.utils_model import LLMRequest
from src.config.config import model_config, global_config
from typing import List
from src.config.config import model_config
from src.memory_system.memory_utils import parse_md_json
logger = get_logger("conflict_tracker")
class QuestionTracker:
"""
用于跟踪一个问题在后续聊天中的解答情况
"""
def __init__(self, question: str, chat_id: str, context: str = "") -> None:
self.question = question
self.chat_id = chat_id
now = time.time()
self.context = context
self.start_time = now
self.last_read_time = now
self.last_judge_time = now # 上次判定的时间
self.judge_debounce_interval = 10.0 # 判定防抖间隔10秒
self.consecutive_end_count = 0 # 连续END计数
self.active = True
# 将 LLM 实例作为类属性,使用 utils 模型
self.llm_request = LLMRequest(model_set=model_config.model_task_config.utils, request_type="conflict.judge")
def stop(self) -> None:
self.active = False
def should_judge_now(self) -> bool:
"""
检查是否应该进行判定防抖检查
Returns:
bool: 是否可以判定
"""
now = time.time()
# 检查是否已经过了10秒的防抖间隔
return (now - self.last_judge_time) >= self.judge_debounce_interval
def __eq__(self, other) -> bool:
"""比较两个追踪器是否相等基于问题内容和聊天ID"""
if not isinstance(other, QuestionTracker):
return False
return self.question == other.question and self.chat_id == other.chat_id
def __hash__(self) -> int:
"""为对象提供哈希值,支持集合操作"""
return hash((self.question, self.chat_id))
async def judge_answer(self, conversation_text: str,chat_len: int) -> tuple[bool, str, str]:
"""
使用模型判定问题是否已得到解答
Returns:
tuple[bool, str, str]: (是否结束跟踪, 结束原因或答案, 判定类型)
- True: 结束跟踪已解答话题转向等
- False: 继续跟踪
判定类型: "ANSWERED", "END", "CONTINUE"
"""
end_prompt = ""
if chat_len > 20:
end_prompt = "\n- 如果最新20条聊天记录内容与问题无关话题已转向其他方向请只输出END"
prompt = f"""你是一个严谨的判定器。下面给出聊天记录以及一个问题。
任务判断在这段聊天中该问题是否已经得到明确解答
**你必须严格按照聊天记录的内容不要添加额外的信息**
输出规则
- 如果聊天记录内容的信息已解答问题请只输出YES: <简短答案>{end_prompt}
- 如果问题尚未解答但聊天仍在相关话题上请只输出NO
**问题**
{self.question}
**聊天记录**
{conversation_text}
"""
if global_config.debug.show_prompt:
logger.info(f"判定提示词: {prompt}")
else:
logger.debug("已发送判定提示词")
result_text, _ = await self.llm_request.generate_response_async(prompt, temperature=0.5)
logger.info(f"判定结果: {prompt}\n{result_text}")
# 更新上次判定时间
self.last_judge_time = time.time()
if not result_text:
return False, "", "CONTINUE"
text = result_text.strip()
if text.upper().startswith("YES:"):
answer = text[4:].strip()
return True, answer, "ANSWERED"
if text.upper().startswith("YES"):
# 兼容仅输出 YES 或 YES <answer>
answer = text[3:].strip().lstrip(":").strip()
return True, answer, "ANSWERED"
if text.upper().startswith("END"):
# 聊天内容与问题无关,放弃该问题思考
return True, "话题已转向其他方向,放弃该问题思考", "END"
return False, "", "CONTINUE"
class ConflictTracker:
"""
记忆整合冲突追踪器
@ -122,31 +14,19 @@ class ConflictTracker:
用于记录和存储记忆整合过程中的冲突内容
"""
def __init__(self):
self.question_tracker_list:List[QuestionTracker] = []
self.LLMRequest_tracker = LLMRequest(
model_set=model_config.model_task_config.utils,
request_type="conflict_tracker",
)
def get_questions_by_chat_id(self, chat_id: str) -> List[QuestionTracker]:
return [tracker for tracker in self.question_tracker_list if tracker.chat_id == chat_id]
async def track_conflict(self, question: str, context: str = "",start_following: bool = False,chat_id: str = "") -> bool:
"""
跟踪冲突内容
"""
tracker = QuestionTracker(question.strip(), chat_id, context)
self.question_tracker_list.append(tracker)
asyncio.create_task(self._follow_and_record(tracker, question.strip()))
return True
async def record_conflict(self, conflict_content: str, context: str = "",start_following: bool = False,chat_id: str = "") -> bool:
async def record_conflict(self, conflict_content: str, context: str = "", chat_id: str = "") -> bool:
"""
记录冲突内容
Args:k
Args:
conflict_content: 冲突内容
context: 上下文
chat_id: 聊天ID
Returns:
bool: 是否成功记录
@ -155,15 +35,7 @@ class ConflictTracker:
if not conflict_content or conflict_content.strip() == "":
return False
# 若需要跟随后续消息以判断是否得到解答,则进入跟踪流程
if start_following and chat_id:
tracker = QuestionTracker(conflict_content.strip(), chat_id, context)
self.question_tracker_list.append(tracker)
# 后台启动跟踪任务,避免阻塞
asyncio.create_task(self._follow_and_record(tracker, conflict_content.strip()))
return True
# 默认:直接记录,不进行跟踪
# 直接记录,不进行跟踪
MemoryConflict.create(
conflict_content=conflict_content,
create_time=time.time(),
@ -179,164 +51,6 @@ class ConflictTracker:
logger.error(f"记录冲突内容时出错: {e}")
return False
async def _follow_and_record(self, tracker: QuestionTracker, original_question: str) -> None:
"""
后台任务跟踪问题是否被解答并写入数据库
"""
try:
max_duration = 10 * 60 # 30 分钟
max_messages = 50 # 最多 100 条消息
poll_interval = 2.0 # 秒
logger.info(f"开始跟踪问题: {original_question}")
while tracker.active:
now_ts = time.time()
# 终止条件:时长达到上限
if now_ts - tracker.start_time >= max_duration:
logger.info("问题跟踪达到10分钟上限判定为未解答")
break
# 统计最近一段是否有新消息(不过滤机器人,过滤命令)
recent_msgs = get_raw_msg_by_timestamp_with_chat(
chat_id=tracker.chat_id,
timestamp_start=tracker.last_read_time,
timestamp_end=now_ts,
limit=30,
limit_mode="latest",
filter_bot=False,
filter_command=True,
)
if len(recent_msgs) > 0:
tracker.last_read_time = now_ts
# 统计从开始到现在的总消息数用于触发100条上限
all_msgs = get_raw_msg_by_timestamp_with_chat(
chat_id=tracker.chat_id,
timestamp_start=tracker.start_time,
timestamp_end=now_ts,
limit=0,
limit_mode="latest",
filter_bot=False,
filter_command=True,
)
# 检查是否应该进行判定(防抖检查)
if not tracker.should_judge_now():
logger.debug(f"判定防抖中,跳过本次判定: {tracker.question}")
await asyncio.sleep(poll_interval)
continue
# 构建可读聊天文本
chat_text = build_readable_messages(
all_msgs,
replace_bot_name=True,
timestamp_mode="relative",
read_mark=0.0,
truncate=False,
show_actions=False,
show_pic=False,
remove_emoji_stickers=True,
)
chat_len = len(all_msgs)
# 让小模型判断是否有答案
answered, answer_text, judge_type = await tracker.judge_answer(chat_text,chat_len)
if judge_type == "ANSWERED":
# 问题已解答,直接结束跟踪
logger.info("问题已得到解答,结束跟踪并写入答案")
await self.add_or_update_conflict(
conflict_content=tracker.question,
create_time=tracker.start_time,
update_time=time.time(),
answer=answer_text or "",
chat_id=tracker.chat_id,
)
return
elif judge_type == "END":
# 话题转向增加END计数
tracker.consecutive_end_count += 1
logger.info(f"话题已转向连续END次数: {tracker.consecutive_end_count}")
if tracker.consecutive_end_count >= 2:
# 连续两次END结束跟踪
logger.info("连续两次END结束跟踪")
break
else:
# 第一次END重置计数器并继续跟踪
logger.info("第一次END继续跟踪")
continue
elif judge_type == "CONTINUE":
# 继续跟踪重置END计数器
tracker.consecutive_end_count = 0
continue
if len(all_msgs) >= max_messages:
logger.info("问题跟踪达到100条消息上限判定为未解答")
logger.info(f"追踪结束:{tracker.question}")
break
# 无新消息时稍作等待
await asyncio.sleep(poll_interval)
# 未获取到答案,检查是否需要删除记录
# 查找现有的冲突记录
existing_conflict = MemoryConflict.get_or_none(
MemoryConflict.conflict_content == original_question,
MemoryConflict.chat_id == tracker.chat_id
)
if existing_conflict:
# 检查raise_time是否大于3且没有答案
current_raise_time = getattr(existing_conflict, "raise_time", 0) or 0
if current_raise_time > 0 and not existing_conflict.answer:
# 删除该条目
await self.delete_conflict(original_question, tracker.chat_id)
logger.info(f"追踪结束后删除条目(raise_time={current_raise_time}且无答案): {original_question}")
else:
# 更新记录但不删除
await self.add_or_update_conflict(
conflict_content=original_question,
create_time=existing_conflict.create_time,
update_time=time.time(),
answer="",
chat_id=tracker.chat_id,
)
logger.info(f"记录冲突内容(未解答): {len(original_question)} 字符")
else:
# 如果没有现有记录,创建新记录
await self.add_or_update_conflict(
conflict_content=original_question,
create_time=time.time(),
update_time=time.time(),
answer="",
chat_id=tracker.chat_id,
)
logger.info(f"记录冲突内容(未解答): {len(original_question)} 字符")
logger.info(f"问题跟踪结束:{original_question}")
except Exception as e:
logger.error(f"后台问题跟踪任务异常: {e}")
finally:
# 无论任务成功还是失败,都要从追踪列表中移除
tracker.stop()
self.remove_tracker(tracker)
def remove_tracker(self, tracker: QuestionTracker) -> None:
"""
从追踪列表中移除指定的追踪器
Args:
tracker: 要移除的追踪器对象
"""
try:
if tracker in self.question_tracker_list:
self.question_tracker_list.remove(tracker)
logger.info(f"已从追踪列表中移除追踪器: {tracker.question}")
else:
logger.warning(f"尝试移除不存在的追踪器: {tracker.question}")
except Exception as e:
logger.error(f"移除追踪器时出错: {e}")
async def add_or_update_conflict(
self,
conflict_content: str,
@ -429,7 +143,6 @@ class ConflictTracker:
await self.record_conflict(
conflict_content=question["question"],
context=reasoning_content,
start_following=False,
chat_id=chat_id,
)
return True