mirror of https://github.com/Mai-with-u/MaiBot.git
666 lines
26 KiB
Python
666 lines
26 KiB
Python
import asyncio
|
||
import json
|
||
import re
|
||
import time
|
||
import random
|
||
|
||
from src.llm_models.utils_model import LLMRequest
|
||
from src.config.config import model_config
|
||
from src.common.database.database_model import MemoryChest as MemoryChestModel
|
||
from src.common.logger import get_logger
|
||
from src.config.config import global_config
|
||
from src.plugin_system.apis.message_api import build_readable_messages
|
||
from src.plugin_system.apis.message_api import get_raw_msg_by_timestamp_with_chat
|
||
from json_repair import repair_json
|
||
from src.memory_system.questions import global_conflict_tracker
|
||
|
||
|
||
from .memory_utils import (
|
||
find_best_matching_memory,
|
||
check_title_exists_fuzzy,
|
||
get_all_titles,
|
||
find_most_similar_memory_by_chat_id,
|
||
compute_merge_similarity_threshold
|
||
|
||
)
|
||
|
||
logger = get_logger("memory")
|
||
|
||
class MemoryChest:
|
||
def __init__(self):
|
||
|
||
self.LLMRequest = LLMRequest(
|
||
model_set=model_config.model_task_config.utils_small,
|
||
request_type="memory_chest",
|
||
)
|
||
|
||
self.LLMRequest_build = LLMRequest(
|
||
model_set=model_config.model_task_config.utils,
|
||
request_type="memory_chest_build",
|
||
)
|
||
|
||
|
||
self.running_content_list = {} # {chat_id: {"content": running_content, "last_update_time": timestamp, "create_time": timestamp}}
|
||
self.fetched_memory_list = [] # [(chat_id, (question, answer, timestamp)), ...]
|
||
|
||
def remove_one_memory_by_age_weight(self) -> bool:
|
||
"""
|
||
删除一条记忆:按“越老/越新更易被删”的权重随机选择(老=较小id,新=较大id)。
|
||
|
||
返回:是否删除成功
|
||
"""
|
||
try:
|
||
memories = list(MemoryChestModel.select())
|
||
if not memories:
|
||
return False
|
||
|
||
# 排除锁定项
|
||
candidates = [m for m in memories if not getattr(m, "locked", False)]
|
||
if not candidates:
|
||
return False
|
||
|
||
# 按 id 排序,使用 id 近似时间顺序(小 -> 老,大 -> 新)
|
||
candidates.sort(key=lambda m: m.id)
|
||
n = len(candidates)
|
||
if n == 1:
|
||
MemoryChestModel.delete().where(MemoryChestModel.id == candidates[0].id).execute()
|
||
logger.info(f"[记忆管理] 已删除一条记忆(权重抽样):{candidates[0].title}")
|
||
return True
|
||
|
||
# 计算U型权重:中间最低,两端最高
|
||
# r ∈ [0,1] 为位置归一化,w = 0.1 + 0.9 * (abs(r-0.5)*2)**1.5
|
||
weights = []
|
||
for idx, _m in enumerate(candidates):
|
||
r = idx / (n - 1)
|
||
w = 0.1 + 0.9 * (abs(r - 0.5) * 2) ** 1.5
|
||
weights.append(w)
|
||
|
||
import random as _random
|
||
selected = _random.choices(candidates, weights=weights, k=1)[0]
|
||
|
||
MemoryChestModel.delete().where(MemoryChestModel.id == selected.id).execute()
|
||
logger.info(f"[记忆管理] 已删除一条记忆(权重抽样):{selected.title}")
|
||
return True
|
||
except Exception as e:
|
||
logger.error(f"[记忆管理] 按年龄权重删除记忆时出错: {e}")
|
||
return False
|
||
|
||
async def get_answer_by_question(self, chat_id: str = "", question: str = "") -> str:
|
||
"""
|
||
根据问题获取答案
|
||
"""
|
||
logger.info(f"正在回忆问题答案: {question}")
|
||
|
||
title = await self.select_title_by_question(question)
|
||
|
||
if not title:
|
||
return ""
|
||
|
||
for memory in MemoryChestModel.select():
|
||
if memory.title == title:
|
||
content = memory.content
|
||
|
||
if random.random() < 0.5:
|
||
type = "要求原文能够较为全面的回答问题"
|
||
else:
|
||
type = "要求提取简短的内容"
|
||
|
||
prompt = f"""
|
||
目标文段:
|
||
{content}
|
||
|
||
你现在需要从目标文段中找出合适的信息来回答问题:{question}
|
||
请务必从目标文段中提取相关信息的**原文**并输出,{type}
|
||
如果没有原文能够回答问题,输出"无有效信息"即可,不要输出其他内容:
|
||
"""
|
||
|
||
if global_config.debug.show_prompt:
|
||
logger.info(f"记忆仓库获取答案 prompt: {prompt}")
|
||
else:
|
||
logger.debug(f"记忆仓库获取答案 prompt: {prompt}")
|
||
|
||
answer, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(prompt)
|
||
|
||
if "无有效" in answer or "无有效信息" in answer or "无信息" in answer:
|
||
logger.info(f"没有能够回答{question}的记忆")
|
||
return ""
|
||
|
||
logger.info(f"记忆仓库对问题 “{question}” 获取答案: {answer}")
|
||
|
||
# 将问题和答案存到fetched_memory_list
|
||
if chat_id and answer:
|
||
self.fetched_memory_list.append((chat_id, (question, answer, time.time())))
|
||
|
||
# 清理fetched_memory_list
|
||
self._cleanup_fetched_memory_list()
|
||
|
||
return answer
|
||
|
||
def get_chat_memories_as_string(self, chat_id: str) -> str:
|
||
"""
|
||
获取某个chat_id的所有记忆,并构建成字符串
|
||
|
||
Args:
|
||
chat_id: 聊天ID
|
||
|
||
Returns:
|
||
str: 格式化的记忆字符串,格式:问题:xxx,答案:xxxxx\n问题:xxx,答案:xxxxx\n...
|
||
"""
|
||
try:
|
||
memories = []
|
||
|
||
# 从fetched_memory_list中获取该chat_id的所有记忆
|
||
for cid, (question, answer, timestamp) in self.fetched_memory_list:
|
||
if cid == chat_id:
|
||
memories.append(f"问题:{question},答案:{answer}")
|
||
|
||
# 按时间戳排序(最新的在后面)
|
||
memories.sort()
|
||
|
||
# 用换行符连接所有记忆
|
||
result = "\n".join(memories)
|
||
|
||
# logger.info(f"chat_id {chat_id} 共有 {len(memories)} 条记忆")
|
||
return result
|
||
|
||
except Exception as e:
|
||
logger.error(f"获取chat_id {chat_id} 的记忆时出错: {e}")
|
||
return ""
|
||
|
||
|
||
async def select_title_by_question(self, question: str) -> str:
|
||
"""
|
||
根据消息内容选择最匹配的标题
|
||
|
||
Args:
|
||
question: 问题
|
||
|
||
Returns:
|
||
str: 选择的标题
|
||
"""
|
||
# 获取所有标题并构建格式化字符串(排除锁定的记忆)
|
||
titles = get_all_titles(exclude_locked=True)
|
||
formatted_titles = ""
|
||
for title in titles:
|
||
formatted_titles += f"{title}\n"
|
||
|
||
prompt = f"""
|
||
所有主题:
|
||
{formatted_titles}
|
||
|
||
请根据以下问题,选择一个能够回答问题的主题:
|
||
问题:{question}
|
||
请你输出主题,不要输出其他内容,完整输出主题名:
|
||
"""
|
||
|
||
if global_config.debug.show_prompt:
|
||
logger.info(f"记忆仓库选择标题 prompt: {prompt}")
|
||
else:
|
||
logger.debug(f"记忆仓库选择标题 prompt: {prompt}")
|
||
|
||
|
||
title, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(prompt)
|
||
|
||
# 根据 title 获取 titles 里的对应项
|
||
selected_title = None
|
||
|
||
# 使用模糊查找匹配标题
|
||
best_match = find_best_matching_memory(title, similarity_threshold=0.8)
|
||
if best_match:
|
||
selected_title = best_match[0] # 获取匹配的标题
|
||
logger.info(f"记忆仓库选择标题: {selected_title} (相似度: {best_match[2]:.3f})")
|
||
else:
|
||
logger.warning(f"未找到相似度 >= 0.7 的标题匹配: {title}")
|
||
selected_title = None
|
||
|
||
return selected_title
|
||
|
||
def _cleanup_fetched_memory_list(self):
|
||
"""
|
||
清理fetched_memory_list,移除超过10分钟的记忆和超过10条的最旧记忆
|
||
"""
|
||
try:
|
||
current_time = time.time()
|
||
ten_minutes_ago = current_time - 600 # 10分钟 = 600秒
|
||
|
||
# 移除超过10分钟的记忆
|
||
self.fetched_memory_list = [
|
||
(chat_id, (question, answer, timestamp))
|
||
for chat_id, (question, answer, timestamp) in self.fetched_memory_list
|
||
if timestamp > ten_minutes_ago
|
||
]
|
||
|
||
# 如果记忆条数超过10条,移除最旧的5条
|
||
if len(self.fetched_memory_list) > 10:
|
||
# 按时间戳排序,移除最旧的5条
|
||
self.fetched_memory_list.sort(key=lambda x: x[1][2]) # 按timestamp排序
|
||
self.fetched_memory_list = self.fetched_memory_list[5:] # 保留最新的5条
|
||
|
||
logger.debug(f"fetched_memory_list清理后,当前有 {len(self.fetched_memory_list)} 条记忆")
|
||
|
||
except Exception as e:
|
||
logger.error(f"清理fetched_memory_list时出错: {e}")
|
||
|
||
async def _save_to_database_and_clear(self, chat_id: str, content: str):
|
||
"""
|
||
生成标题,保存到数据库,并清空对应chat_id的running_content
|
||
|
||
Args:
|
||
chat_id: 聊天ID
|
||
content: 要保存的内容
|
||
"""
|
||
try:
|
||
# 生成标题
|
||
title = ""
|
||
title_prompt = f"""
|
||
请为以下内容生成一个描述全面的标题,要求描述内容的主要概念和事件:
|
||
{content}
|
||
|
||
标题不要分点,不要换行,不要输出其他内容
|
||
请只输出标题,不要输出其他内容:
|
||
"""
|
||
|
||
if global_config.debug.show_prompt:
|
||
logger.info(f"记忆仓库生成标题 prompt: {title_prompt}")
|
||
else:
|
||
logger.debug(f"记忆仓库生成标题 prompt: {title_prompt}")
|
||
|
||
title, (reasoning_content, model_name, tool_calls) = await self.LLMRequest_build.generate_response_async(title_prompt)
|
||
|
||
|
||
await asyncio.sleep(0.5)
|
||
|
||
if title:
|
||
# 保存到数据库
|
||
MemoryChestModel.create(
|
||
title=title.strip(),
|
||
content=content,
|
||
chat_id=chat_id
|
||
)
|
||
logger.info(f"已保存记忆仓库内容,标题: {title.strip()}, chat_id: {chat_id}")
|
||
|
||
# 清空内容并刷新时间戳,但保留条目用于增量计算
|
||
if chat_id in self.running_content_list:
|
||
current_time = time.time()
|
||
self.running_content_list[chat_id] = {
|
||
"content": "",
|
||
"last_update_time": current_time,
|
||
"create_time": current_time
|
||
}
|
||
logger.info(f"已保存并刷新chat_id {chat_id} 的时间戳,准备下一次增量构建")
|
||
else:
|
||
logger.warning(f"生成标题失败,chat_id: {chat_id}")
|
||
|
||
except Exception as e:
|
||
logger.error(f"保存记忆仓库内容时出错: {e}")
|
||
|
||
async def choose_merge_target(self, memory_title: str, chat_id: str = None) -> tuple[list[str], list[str]]:
|
||
"""
|
||
选择与给定记忆标题相关的记忆目标(基于文本相似度)
|
||
|
||
Args:
|
||
memory_title: 要匹配的记忆标题
|
||
chat_id: 聊天ID,用于筛选同chat_id的记忆
|
||
|
||
Returns:
|
||
tuple[list[str], list[str]]: (选中的记忆标题列表, 选中的记忆内容列表)
|
||
"""
|
||
try:
|
||
if not chat_id:
|
||
logger.warning("未提供chat_id,无法进行记忆匹配")
|
||
return [], []
|
||
|
||
# 动态计算相似度阈值(占比越高阈值越低)
|
||
dynamic_threshold = compute_merge_similarity_threshold()
|
||
|
||
# 使用相似度匹配查找最相似的记忆(基于动态阈值)
|
||
similar_memory = find_most_similar_memory_by_chat_id(
|
||
target_title=memory_title,
|
||
target_chat_id=chat_id,
|
||
similarity_threshold=dynamic_threshold
|
||
)
|
||
|
||
if similar_memory:
|
||
selected_title, selected_content, similarity = similar_memory
|
||
logger.info(f"为 '{memory_title}' 找到相似记忆: '{selected_title}' (相似度: {similarity:.3f} 阈值: {dynamic_threshold:.2f})")
|
||
return [selected_title], [selected_content]
|
||
else:
|
||
logger.info(f"为 '{memory_title}' 未找到相似度 >= {dynamic_threshold:.2f} 的记忆")
|
||
return [], []
|
||
|
||
except Exception as e:
|
||
logger.error(f"选择合并目标时出错: {e}")
|
||
return [], []
|
||
|
||
def _get_memories_by_titles(self, titles: list[str]) -> list[str]:
|
||
"""
|
||
根据标题列表查找对应的记忆内容
|
||
|
||
Args:
|
||
titles: 记忆标题列表
|
||
|
||
Returns:
|
||
list[str]: 记忆内容列表
|
||
"""
|
||
try:
|
||
contents = []
|
||
for title in titles:
|
||
if not title or not title.strip():
|
||
continue
|
||
|
||
# 使用模糊查找匹配记忆
|
||
try:
|
||
best_match = find_best_matching_memory(title.strip(), similarity_threshold=0.8)
|
||
if best_match:
|
||
# 检查记忆是否被锁定
|
||
memory_title = best_match[0]
|
||
memory_content = best_match[1]
|
||
|
||
# 查询数据库中的锁定状态
|
||
for memory in MemoryChestModel.select():
|
||
if memory.title == memory_title and memory.locked:
|
||
logger.warning(f"记忆 '{memory_title}' 已锁定,跳过合并")
|
||
continue
|
||
|
||
contents.append(memory_content)
|
||
logger.debug(f"找到记忆: {memory_title} (相似度: {best_match[2]:.3f})")
|
||
else:
|
||
logger.warning(f"未找到相似度 >= 0.8 的标题匹配: '{title}'")
|
||
except Exception as e:
|
||
logger.error(f"查找标题 '{title}' 的记忆时出错: {e}")
|
||
continue
|
||
|
||
# logger.info(f"成功找到 {len(contents)} 条记忆内容")
|
||
return contents
|
||
|
||
except Exception as e:
|
||
logger.error(f"根据标题查找记忆时出错: {e}")
|
||
return []
|
||
|
||
def _parse_merged_parts(self, merged_response: str) -> tuple[str, str]:
|
||
"""
|
||
解析合并记忆的part1和part2内容
|
||
|
||
Args:
|
||
merged_response: LLM返回的合并记忆响应
|
||
|
||
Returns:
|
||
tuple[str, str]: (part1_content, part2_content)
|
||
"""
|
||
try:
|
||
# 使用正则表达式提取part1和part2内容
|
||
import re
|
||
|
||
# 提取part1内容
|
||
part1_pattern = r'<part1>(.*?)</part1>'
|
||
part1_match = re.search(part1_pattern, merged_response, re.DOTALL)
|
||
part1_content = part1_match.group(1).strip() if part1_match else ""
|
||
|
||
# 提取part2内容
|
||
part2_pattern = r'<part2>(.*?)</part2>'
|
||
part2_match = re.search(part2_pattern, merged_response, re.DOTALL)
|
||
part2_content = part2_match.group(1).strip() if part2_match else ""
|
||
|
||
# 检查是否包含none或None(不区分大小写)
|
||
def is_none_content(content: str) -> bool:
|
||
if not content:
|
||
return True
|
||
# 检查是否只包含"none"或"None"(不区分大小写)
|
||
return re.match(r'^\s*none\s*$', content, re.IGNORECASE) is not None
|
||
|
||
# 如果包含none,则设置为空字符串
|
||
if is_none_content(part1_content):
|
||
part1_content = ""
|
||
logger.info("part1内容为none,设置为空")
|
||
|
||
if is_none_content(part2_content):
|
||
part2_content = ""
|
||
logger.info("part2内容为none,设置为空")
|
||
|
||
return part1_content, part2_content
|
||
|
||
except Exception as e:
|
||
logger.error(f"解析合并记忆part1/part2时出错: {e}")
|
||
return "", ""
|
||
|
||
def _parse_merge_target_json(self, json_text: str) -> list[str]:
|
||
"""
|
||
解析choose_merge_target生成的JSON响应
|
||
|
||
Args:
|
||
json_text: LLM返回的JSON文本
|
||
|
||
Returns:
|
||
list[str]: 解析出的记忆标题列表
|
||
"""
|
||
try:
|
||
# 清理JSON文本,移除可能的额外内容
|
||
repaired_content = repair_json(json_text)
|
||
|
||
# 尝试直接解析JSON
|
||
try:
|
||
parsed_data = json.loads(repaired_content)
|
||
if isinstance(parsed_data, list):
|
||
# 如果是列表,提取selected_title字段
|
||
titles = []
|
||
for item in parsed_data:
|
||
if isinstance(item, dict) and "selected_title" in item:
|
||
value = item.get("selected_title", "")
|
||
if isinstance(value, str) and value.strip():
|
||
titles.append(value)
|
||
return titles
|
||
elif isinstance(parsed_data, dict) and "selected_title" in parsed_data:
|
||
# 如果是单个对象
|
||
value = parsed_data.get("selected_title", "")
|
||
if isinstance(value, str) and value.strip():
|
||
return [value]
|
||
else:
|
||
# 空字符串表示没有相关记忆
|
||
return []
|
||
except json.JSONDecodeError:
|
||
pass
|
||
|
||
# 如果直接解析失败,尝试提取JSON对象
|
||
# 查找所有包含selected_title的JSON对象
|
||
pattern = r'\{[^}]*"selected_title"[^}]*\}'
|
||
matches = re.findall(pattern, repaired_content)
|
||
|
||
titles = []
|
||
for match in matches:
|
||
try:
|
||
obj = json.loads(match)
|
||
if "selected_title" in obj:
|
||
value = obj.get("selected_title", "")
|
||
if isinstance(value, str) and value.strip():
|
||
titles.append(value)
|
||
except json.JSONDecodeError:
|
||
continue
|
||
|
||
if titles:
|
||
return titles
|
||
|
||
logger.warning(f"无法解析JSON响应: {json_text[:200]}...")
|
||
return []
|
||
|
||
except Exception as e:
|
||
logger.error(f"解析合并目标JSON时出错: {e}")
|
||
return []
|
||
|
||
async def merge_memory(self,memory_list: list[str], chat_id: str = None) -> tuple[str, str]:
|
||
"""
|
||
合并记忆
|
||
"""
|
||
try:
|
||
# 在记忆整合前先清理空chat_id的记忆
|
||
cleaned_count = self.cleanup_empty_chat_id_memories()
|
||
if cleaned_count > 0:
|
||
logger.info(f"记忆整合前清理了 {cleaned_count} 条空chat_id记忆")
|
||
|
||
content = ""
|
||
for memory in memory_list:
|
||
content += f"{memory}\n"
|
||
|
||
prompt = f"""
|
||
以下是多段记忆内容,请将它们进行整合和修改:
|
||
{content}
|
||
--------------------------------
|
||
请将上面的多段记忆内容,合并成两部分内容,第一部分是可以整合,不冲突的概念和知识,第二部分是相互有冲突的概念和知识
|
||
请主要关注概念和知识,而不是聊天的琐事
|
||
重要!!你要关注的概念和知识必须是较为不常见的信息,或者时效性较强的信息!!
|
||
不要!!关注常见的只是,或者已经过时的信息!!
|
||
1.不要关注诸如某个用户做了什么,说了什么,不要关注某个用户的行为,而是关注其中的概念性信息
|
||
2.概念要求精确,不啰嗦,像科普读物或教育课本那样
|
||
3.如果有图片,请只关注图片和文本结合的知识和概念性内容
|
||
4.记忆为一段纯文本,逻辑清晰,指出概念的含义,并说明关系
|
||
**第一部分**
|
||
1.如果两个概念在描述同一件事情,且相互之间逻辑不冲突(请你严格判断),且相互之间没有矛盾,请将它们整合成一个概念,并输出到第一部分
|
||
2.如果某个概念在时间上更新了另一个概念,请用新概念更新就概念来整合,并输出到第一部分
|
||
3.如果没有可整合的概念,请你输出none
|
||
**第二部分**
|
||
1.如果记忆中有无法整合的地方,例如概念不一致,有逻辑上的冲突,请你输出到第二部分
|
||
2.如果两个概念在描述同一件事情,但相互之间逻辑冲突,请将它们输出到第二部分
|
||
3.如果没有无法整合的概念,请你输出none
|
||
|
||
**输出格式要求**
|
||
请你按以下格式输出:
|
||
<part1>
|
||
第一部分内容,整合后的概念,如果第一部分为none,请输出none
|
||
</part1>
|
||
<part2>
|
||
第二部分内容,无法整合,冲突的概念,如果第二部分为none,请输出none
|
||
</part2>
|
||
不要输出其他内容,现在请你输出,不要输出其他内容,注意一定要直白,白话,口语化不要浮夸,修辞。:
|
||
"""
|
||
|
||
if global_config.debug.show_prompt:
|
||
logger.info(f"合并记忆 prompt: {prompt}")
|
||
else:
|
||
logger.debug(f"合并记忆 prompt: {prompt}")
|
||
|
||
merged_memory, (reasoning_content, model_name, tool_calls) = await self.LLMRequest_build.generate_response_async(prompt)
|
||
|
||
# 解析part1和part2
|
||
part1_content, part2_content = self._parse_merged_parts(merged_memory)
|
||
|
||
# 处理part2:独立记录冲突内容(无论part1是否为空)
|
||
if part2_content and part2_content.strip() != "none":
|
||
logger.info(f"合并记忆part2记录冲突内容: {len(part2_content)} 字符")
|
||
# 记录冲突到数据库
|
||
await global_conflict_tracker.record_memory_merge_conflict(part2_content,chat_id)
|
||
|
||
# 处理part1:生成标题并保存
|
||
if part1_content and part1_content.strip() != "none":
|
||
merged_title = await self._generate_title_for_merged_memory(part1_content)
|
||
|
||
# 保存part1到数据库
|
||
MemoryChestModel.create(
|
||
title=merged_title,
|
||
content=part1_content,
|
||
chat_id=chat_id
|
||
)
|
||
|
||
logger.info(f"合并记忆part1已保存: {merged_title}")
|
||
|
||
return merged_title, part1_content
|
||
else:
|
||
logger.warning("合并记忆part1为空,跳过保存")
|
||
return "", ""
|
||
except Exception as e:
|
||
logger.error(f"合并记忆时出错: {e}")
|
||
return "", ""
|
||
|
||
async def _generate_title_for_merged_memory(self, merged_content: str) -> str:
|
||
"""
|
||
为合并后的记忆生成标题
|
||
|
||
Args:
|
||
merged_content: 合并后的记忆内容
|
||
|
||
Returns:
|
||
str: 生成的标题
|
||
"""
|
||
try:
|
||
prompt = f"""
|
||
请为以下内容生成一个描述全面的标题,要求描述内容的主要概念和事件:
|
||
例如:
|
||
<example>
|
||
标题:达尔文的自然选择理论
|
||
内容:达尔文的自然选择是生物进化理论的重要组成部分,它解释了生物进化过程中的自然选择机制。
|
||
</example>
|
||
<example>
|
||
标题:麦麦的禁言插件和支持版本
|
||
内容:
|
||
麦麦的禁言插件是一款能够实现禁言的插件
|
||
麦麦的禁言插件可能不支持0.10.2
|
||
MutePlugin 是禁言插件的名称
|
||
</example>
|
||
|
||
|
||
需要对以下内容生成标题:
|
||
{merged_content}
|
||
|
||
|
||
标题不要分点,不要换行,不要输出其他内容,不要浮夸,以白话简洁的风格输出标题
|
||
请只输出标题,不要输出其他内容:
|
||
"""
|
||
|
||
if global_config.debug.show_prompt:
|
||
logger.info(f"生成合并记忆标题 prompt: {prompt}")
|
||
else:
|
||
logger.debug(f"生成合并记忆标题 prompt: {prompt}")
|
||
|
||
title_response, (reasoning_content, model_name, tool_calls) = await self.LLMRequest.generate_response_async(prompt)
|
||
|
||
# 清理标题,移除可能的引号或多余字符
|
||
title = title_response.strip().strip('"').strip("'").strip()
|
||
|
||
if title:
|
||
# 检查是否存在相似标题
|
||
if check_title_exists_fuzzy(title, similarity_threshold=0.9):
|
||
logger.warning(f"生成的标题 '{title}' 与现有标题相似,使用时间戳后缀")
|
||
title = f"{title}_{int(time.time())}"
|
||
|
||
logger.info(f"生成合并记忆标题: {title}")
|
||
return title
|
||
else:
|
||
logger.warning("生成合并记忆标题失败,使用默认标题")
|
||
return f"合并记忆_{int(time.time())}"
|
||
|
||
except Exception as e:
|
||
logger.error(f"生成合并记忆标题时出错: {e}")
|
||
return f"合并记忆_{int(time.time())}"
|
||
|
||
def cleanup_empty_chat_id_memories(self) -> int:
|
||
"""
|
||
清理chat_id为空的记忆记录
|
||
|
||
Returns:
|
||
int: 被清理的记忆数量
|
||
"""
|
||
try:
|
||
# 查找所有chat_id为空的记忆
|
||
empty_chat_id_memories = MemoryChestModel.select().where(
|
||
(MemoryChestModel.chat_id.is_null()) |
|
||
(MemoryChestModel.chat_id == "") |
|
||
(MemoryChestModel.chat_id == "None")
|
||
)
|
||
|
||
count = 0
|
||
for memory in empty_chat_id_memories:
|
||
logger.info(f"清理空chat_id记忆: 标题='{memory.title}', ID={memory.id}")
|
||
memory.delete_instance()
|
||
count += 1
|
||
|
||
if count > 0:
|
||
logger.info(f"已清理 {count} 条chat_id为空的记忆记录")
|
||
else:
|
||
logger.debug("未发现需要清理的空chat_id记忆记录")
|
||
|
||
return count
|
||
|
||
except Exception as e:
|
||
logger.error(f"清理空chat_id记忆时出错: {e}")
|
||
return 0
|
||
|
||
|
||
global_memory_chest = MemoryChest() |