mirror of https://github.com/Mai-with-u/MaiBot.git
feat:提供记忆整合功能
parent
6b25c0295d
commit
14a8890791
|
|
@ -1,3 +1,5 @@
|
|||
import json
|
||||
import re
|
||||
|
||||
from src.llm_models.utils_model import LLMRequest
|
||||
from src.config.config import model_config
|
||||
|
|
@ -7,6 +9,7 @@ from src.config.config import global_config
|
|||
from src.plugin_system.apis.message_api import build_readable_messages
|
||||
import time
|
||||
from src.plugin_system.apis.message_api import get_raw_msg_by_timestamp_with_chat
|
||||
from json_repair import repair_json
|
||||
|
||||
logger = get_logger("memory_chest")
|
||||
|
||||
|
|
@ -24,7 +27,7 @@ class MemoryChest:
|
|||
)
|
||||
|
||||
self.memory_build_threshold = 30
|
||||
self.memory_size_limit = 1024
|
||||
self.memory_size_limit = global_config.memory.max_memory_size
|
||||
|
||||
self.running_content_list = {} # {chat_id: {"content": running_content, "last_update_time": timestamp}}
|
||||
self.fetched_memory_list = [] # [(chat_id, (question, answer, timestamp)), ...]
|
||||
|
|
@ -324,5 +327,180 @@ class MemoryChest:
|
|||
except Exception as e:
|
||||
logger.error(f"保存记忆仓库内容时出错: {e}")
|
||||
|
||||
async def choose_merge_target(self, memory_title: str) -> list[str]:
|
||||
"""
|
||||
选择与给定记忆标题相关的记忆目标
|
||||
|
||||
Args:
|
||||
memory_title: 要匹配的记忆标题
|
||||
|
||||
Returns:
|
||||
list[str]: 选中的记忆内容列表
|
||||
"""
|
||||
try:
|
||||
all_titles = self.get_all_titles()
|
||||
content = ""
|
||||
for title in all_titles:
|
||||
content += f"{title}\n"
|
||||
|
||||
prompt = f"""
|
||||
所有记忆列表
|
||||
{content}
|
||||
|
||||
请根据以上记忆列表,选择一个与"{memory_title}"相关的记忆,用json输出:
|
||||
可以选择多个相关的记忆,但最多不超过5个
|
||||
例如:
|
||||
{{
|
||||
"selected_title": "选择的相关记忆标题"
|
||||
}},
|
||||
{{
|
||||
"selected_title": "选择的相关记忆标题"
|
||||
}},
|
||||
{{
|
||||
"selected_title": "选择的相关记忆标题"
|
||||
}}
|
||||
...
|
||||
请输出JSON格式,不要输出其他内容:
|
||||
"""
|
||||
if global_config.debug.show_prompt:
|
||||
logger.info(f"选择合并目标 prompt: {prompt}")
|
||||
else:
|
||||
logger.debug(f"选择合并目标 prompt: {prompt}")
|
||||
|
||||
merge_target_response, (reasoning_content, model_name, tool_calls) = await self.LLMRequest_build.generate_response_async(prompt)
|
||||
|
||||
# 解析JSON响应
|
||||
selected_titles = self._parse_merge_target_json(merge_target_response)
|
||||
|
||||
# 根据标题查找对应的内容
|
||||
selected_contents = self._get_memories_by_titles(selected_titles)
|
||||
|
||||
logger.info(f"选择合并目标结果: {len(selected_contents)} 条记忆")
|
||||
return selected_contents
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"选择合并目标时出错: {e}")
|
||||
return []
|
||||
|
||||
def _get_memories_by_titles(self, titles: list[str]) -> list[str]:
|
||||
"""
|
||||
根据标题列表查找对应的记忆内容
|
||||
|
||||
Args:
|
||||
titles: 记忆标题列表
|
||||
|
||||
Returns:
|
||||
list[str]: 记忆内容列表
|
||||
"""
|
||||
try:
|
||||
from src.common.database.database_model import MemoryChest as MemoryChestModel
|
||||
|
||||
contents = []
|
||||
for title in titles:
|
||||
if not title or not title.strip():
|
||||
continue
|
||||
|
||||
# 在数据库中查找匹配的记忆
|
||||
try:
|
||||
memory_record = MemoryChestModel.select().where(MemoryChestModel.title == title.strip()).first()
|
||||
if memory_record:
|
||||
contents.append(memory_record.content)
|
||||
logger.debug(f"找到记忆: {memory_record.title}")
|
||||
else:
|
||||
logger.warning(f"未找到标题为 '{title}' 的记忆")
|
||||
except Exception as e:
|
||||
logger.error(f"查找标题 '{title}' 的记忆时出错: {e}")
|
||||
continue
|
||||
|
||||
logger.info(f"成功找到 {len(contents)} 条记忆内容")
|
||||
return contents
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"根据标题查找记忆时出错: {e}")
|
||||
return []
|
||||
|
||||
def _parse_merge_target_json(self, json_text: str) -> list[str]:
|
||||
"""
|
||||
解析choose_merge_target生成的JSON响应
|
||||
|
||||
Args:
|
||||
json_text: LLM返回的JSON文本
|
||||
|
||||
Returns:
|
||||
list[str]: 解析出的记忆标题列表
|
||||
"""
|
||||
try:
|
||||
# 清理JSON文本,移除可能的额外内容
|
||||
repaired_content = repair_json(json_text)
|
||||
|
||||
# 尝试直接解析JSON
|
||||
try:
|
||||
parsed_data = json.loads(repaired_content)
|
||||
if isinstance(parsed_data, list):
|
||||
# 如果是列表,提取selected_title字段
|
||||
titles = []
|
||||
for item in parsed_data:
|
||||
if isinstance(item, dict) and "selected_title" in item:
|
||||
titles.append(item["selected_title"])
|
||||
return titles
|
||||
elif isinstance(parsed_data, dict) and "selected_title" in parsed_data:
|
||||
# 如果是单个对象
|
||||
return [parsed_data["selected_title"]]
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# 如果直接解析失败,尝试提取JSON对象
|
||||
# 查找所有包含selected_title的JSON对象
|
||||
pattern = r'\{[^}]*"selected_title"[^}]*\}'
|
||||
matches = re.findall(pattern, repaired_content)
|
||||
|
||||
titles = []
|
||||
for match in matches:
|
||||
try:
|
||||
obj = json.loads(match)
|
||||
if "selected_title" in obj:
|
||||
titles.append(obj["selected_title"])
|
||||
except json.JSONDecodeError:
|
||||
continue
|
||||
|
||||
if titles:
|
||||
return titles
|
||||
|
||||
logger.warning(f"无法解析JSON响应: {json_text[:200]}...")
|
||||
return []
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"解析合并目标JSON时出错: {e}")
|
||||
return []
|
||||
|
||||
async def merge_memory(self,memory_list: list[str]) -> tuple[str, str]:
|
||||
"""
|
||||
合并记忆
|
||||
"""
|
||||
try:
|
||||
content = ""
|
||||
for memory in memory_list:
|
||||
content += f"{memory.content}\n"
|
||||
|
||||
prompt = f"""
|
||||
以下是多段记忆内容,请将它们合并成一段记忆:
|
||||
{content}
|
||||
|
||||
请主要关注概念和知识,而不是聊天的琐事
|
||||
记忆为一段纯文本,逻辑清晰,指出事件,概念的含义,并说明关系
|
||||
请输出添加后的记忆内容,不要输出其他内容:
|
||||
"""
|
||||
|
||||
if global_config.debug.show_prompt:
|
||||
logger.info(f"合并记忆 prompt: {prompt}")
|
||||
else:
|
||||
logger.debug(f"合并记忆 prompt: {prompt}")
|
||||
|
||||
merged_memory, (reasoning_content, model_name, tool_calls) = await self.LLMRequest_build.generate_response_async(prompt)
|
||||
|
||||
return merged_memory
|
||||
except Exception as e:
|
||||
logger.error(f"合并记忆时出错: {e}")
|
||||
|
||||
|
||||
global_memory_chest = MemoryChest()
|
||||
|
|
@ -1,10 +1,11 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
import asyncio
|
||||
import random
|
||||
import re
|
||||
from typing import List
|
||||
|
||||
from src.manager.async_task_manager import AsyncTask
|
||||
from src.chat.memory_system.Hippocampus import hippocampus_manager
|
||||
from src.chat.memory_system.Memory_chest import global_memory_chest
|
||||
from src.common.logger import get_logger
|
||||
|
||||
logger = get_logger("hippocampus_to_memory_chest")
|
||||
|
|
@ -13,20 +14,42 @@ logger = get_logger("hippocampus_to_memory_chest")
|
|||
class HippocampusToMemoryChestTask(AsyncTask):
|
||||
"""海马体到记忆仓库的转换任务
|
||||
|
||||
每60秒随机选择5个海马体节点,将内容拼接为content,
|
||||
然后根据memory_chest的格式生成标题并存储
|
||||
每10秒执行一次转换,每次最多处理50批,每批15个节点,
|
||||
当没有新节点时停止任务运行
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
task_name="Hippocampus to Memory Chest Task",
|
||||
wait_before_start=10, # 启动后等待60秒再开始
|
||||
run_interval=60 # 每60秒运行一次
|
||||
wait_before_start=5, # 启动后等待5秒再开始
|
||||
run_interval=10 # 每10秒运行一次
|
||||
)
|
||||
self.task_stopped = False # 标记任务是否已停止
|
||||
|
||||
async def start_task(self, abort_flag: asyncio.Event):
|
||||
"""重写start_task方法,支持任务停止"""
|
||||
if self.wait_before_start > 0:
|
||||
# 等待指定时间后开始任务
|
||||
await asyncio.sleep(self.wait_before_start)
|
||||
|
||||
while not abort_flag.is_set() and not self.task_stopped:
|
||||
await self.run()
|
||||
if self.run_interval > 0:
|
||||
await asyncio.sleep(self.run_interval)
|
||||
else:
|
||||
break
|
||||
|
||||
if self.task_stopped:
|
||||
logger.info("[海马体转换] 任务已完全停止,不再执行")
|
||||
|
||||
async def run(self):
|
||||
"""执行转换任务"""
|
||||
try:
|
||||
# 检查任务是否已停止
|
||||
if self.task_stopped:
|
||||
logger.info("[海马体转换] 任务已停止,跳过执行")
|
||||
return
|
||||
|
||||
logger.info("[海马体转换] 开始执行海马体到记忆仓库的转换任务")
|
||||
|
||||
# 检查海马体管理器是否已初始化
|
||||
|
|
@ -38,81 +61,100 @@ class HippocampusToMemoryChestTask(AsyncTask):
|
|||
hippocampus = hippocampus_manager.get_hippocampus()
|
||||
memory_graph = hippocampus.memory_graph.G
|
||||
|
||||
# 获取所有节点
|
||||
all_nodes = list(memory_graph.nodes())
|
||||
# 执行10批转换
|
||||
total_processed = 0
|
||||
total_success = 0
|
||||
|
||||
if len(all_nodes) < 10:
|
||||
selected_nodes = all_nodes
|
||||
logger.info(f"[海马体转换] 当前只有 {len(all_nodes)} 个节点,少于5个,跳过本次转换")
|
||||
else:
|
||||
for batch_num in range(1, 51): # 执行10批
|
||||
logger.info(f"[海马体转换] 开始执行第 {batch_num} 批转换")
|
||||
|
||||
# 随机选择5个节点
|
||||
selected_nodes = random.sample(all_nodes, 10)
|
||||
logger.info(f"[海马体转换] 随机选择了 {len(selected_nodes)} 个节点: {selected_nodes}")
|
||||
|
||||
# 拼接节点内容
|
||||
content_parts = []
|
||||
for node in selected_nodes:
|
||||
node_data = memory_graph.nodes[node]
|
||||
memory_items = node_data.get("memory_items", "")
|
||||
# 检查剩余节点
|
||||
remaining_nodes = list(memory_graph.nodes())
|
||||
if len(remaining_nodes) == 0:
|
||||
logger.info(f"[海马体转换] 第 {batch_num} 批:没有剩余节点,停止任务运行")
|
||||
self.task_stopped = True
|
||||
break
|
||||
|
||||
if memory_items and memory_items.strip():
|
||||
# 添加节点名称和内容
|
||||
content_parts.append(f"【{node}】{memory_items}")
|
||||
# 如果剩余节点不足10个,使用所有剩余节点
|
||||
if len(remaining_nodes) < 15:
|
||||
selected_nodes = remaining_nodes
|
||||
logger.info(f"[海马体转换] 第 {batch_num} 批:剩余节点不足10个({len(remaining_nodes)}个),使用所有剩余节点")
|
||||
else:
|
||||
logger.debug(f"[海马体转换] 节点 {node} 没有记忆内容,跳过")
|
||||
|
||||
if not content_parts:
|
||||
logger.info("[海马体转换] 没有找到有效的记忆内容,跳过本次转换")
|
||||
return
|
||||
# 随机选择10个节点
|
||||
selected_nodes = random.sample(remaining_nodes, 15)
|
||||
logger.info(f"[海马体转换] 第 {batch_num} 批:选择了 {len(selected_nodes)} 个节点")
|
||||
|
||||
# 拼接所有内容
|
||||
combined_content = "\n\n".join(content_parts)
|
||||
logger.info(f"[海马体转换] 拼接完成,内容长度: {len(combined_content)} 字符")
|
||||
# 拼接节点内容
|
||||
content_parts = []
|
||||
valid_nodes = []
|
||||
|
||||
for node in selected_nodes:
|
||||
node_data = memory_graph.nodes[node]
|
||||
memory_items = node_data.get("memory_items", "")
|
||||
|
||||
if memory_items and memory_items.strip():
|
||||
# 添加节点名称和内容
|
||||
content_parts.append(f"【{node}】{memory_items}")
|
||||
valid_nodes.append(node)
|
||||
else:
|
||||
logger.debug(f"[海马体转换] 第 {batch_num} 批:节点 {node} 没有记忆内容,跳过")
|
||||
|
||||
if not content_parts:
|
||||
logger.info(f"[海马体转换] 第 {batch_num} 批:没有找到有效的记忆内容,跳过")
|
||||
continue
|
||||
|
||||
# 拼接所有内容
|
||||
combined_content = "\n\n".join(content_parts)
|
||||
logger.info(f"[海马体转换] 第 {batch_num} 批:拼接完成,内容长度: {len(combined_content)} 字符")
|
||||
|
||||
# 生成标题并存储到记忆仓库
|
||||
success = await self._save_to_memory_chest(combined_content, batch_num)
|
||||
|
||||
# 如果保存成功,删除已转换的节点
|
||||
if success:
|
||||
await self._remove_converted_nodes(valid_nodes)
|
||||
total_success += 1
|
||||
logger.info(f"[海马体转换] 第 {batch_num} 批:转换成功")
|
||||
else:
|
||||
logger.warning(f"[海马体转换] 第 {batch_num} 批:转换失败")
|
||||
|
||||
total_processed += 1
|
||||
|
||||
# 批次间短暂休息,避免过于频繁的数据库操作
|
||||
if batch_num < 10:
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
# 生成标题并存储到记忆仓库
|
||||
success = await self._save_to_memory_chest(combined_content)
|
||||
|
||||
# 如果保存成功,删除已转换的节点
|
||||
if success:
|
||||
await self._remove_converted_nodes(selected_nodes)
|
||||
logger.info(f"[海马体转换] 本次执行完成:共处理 {total_processed} 批,成功 {total_success} 批")
|
||||
|
||||
logger.info("[海马体转换] 转换任务完成")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[海马体转换] 执行转换任务时发生错误: {e}", exc_info=True)
|
||||
|
||||
async def _save_to_memory_chest(self, content: str) -> bool:
|
||||
async def _save_to_memory_chest(self, content: str, batch_num: int = 1) -> bool:
|
||||
"""将内容保存到记忆仓库
|
||||
|
||||
Args:
|
||||
content: 要保存的内容
|
||||
batch_num: 批次号
|
||||
|
||||
Returns:
|
||||
bool: 保存是否成功
|
||||
"""
|
||||
try:
|
||||
# 使用Memory_chest的LLMRequest生成标题
|
||||
title_prompt = f"""
|
||||
请为以下内容生成一个描述全面的标题,要求描述内容的主要概念和事件:
|
||||
{content}
|
||||
|
||||
请只输出标题,不要输出其他内容:
|
||||
"""
|
||||
# 从内容中提取节点名称作为标题
|
||||
title = self._generate_title_from_content(content, batch_num)
|
||||
|
||||
# 使用Memory_chest的LLM模型生成标题
|
||||
title, (reasoning_content, model_name, tool_calls) = await global_memory_chest.LLMRequest_build.generate_response_async(title_prompt)
|
||||
|
||||
if title and title.strip():
|
||||
if title:
|
||||
# 保存到数据库
|
||||
from src.common.database.database_model import MemoryChest as MemoryChestModel
|
||||
|
||||
MemoryChestModel.create(
|
||||
title=title.strip(),
|
||||
title=title,
|
||||
content=content
|
||||
)
|
||||
|
||||
logger.info(f"[海马体转换] 已保存到记忆仓库,标题: {title.strip()}")
|
||||
logger.info(f"[海马体转换] 第 {batch_num} 批:已保存到记忆仓库,标题: {title}")
|
||||
return True
|
||||
else:
|
||||
logger.warning("[海马体转换] 生成标题失败,跳过保存")
|
||||
|
|
@ -122,6 +164,34 @@ class HippocampusToMemoryChestTask(AsyncTask):
|
|||
logger.error(f"[海马体转换] 保存到记忆仓库时发生错误: {e}", exc_info=True)
|
||||
return False
|
||||
|
||||
def _generate_title_from_content(self, content: str, batch_num: int = 1) -> str:
|
||||
"""从内容中提取节点名称生成标题
|
||||
|
||||
Args:
|
||||
content: 拼接的内容
|
||||
batch_num: 批次号
|
||||
|
||||
Returns:
|
||||
str: 生成的标题
|
||||
"""
|
||||
try:
|
||||
# 提取所有【节点名称】中的节点名称
|
||||
node_pattern = r'【([^】]+)】'
|
||||
nodes = re.findall(node_pattern, content)
|
||||
|
||||
if nodes:
|
||||
# 去重并限制数量(最多显示前5个)
|
||||
unique_nodes = list(dict.fromkeys(nodes))[:5]
|
||||
title = f"关于{','.join(unique_nodes)}的记忆"
|
||||
return title
|
||||
else:
|
||||
logger.warning("[海马体转换] 无法从内容中提取节点名称")
|
||||
return ""
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[海马体转换] 生成标题时发生错误: {e}", exc_info=True)
|
||||
return ""
|
||||
|
||||
async def _remove_converted_nodes(self, nodes_to_remove: List[str]):
|
||||
"""删除已转换的海马体节点
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,177 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
import asyncio
|
||||
import random
|
||||
from typing import List
|
||||
|
||||
from src.manager.async_task_manager import AsyncTask
|
||||
from src.chat.memory_system.Memory_chest import global_memory_chest
|
||||
from src.common.logger import get_logger
|
||||
from src.common.database.database_model import MemoryChest as MemoryChestModel
|
||||
from src.config.config import global_config
|
||||
|
||||
logger = get_logger("memory_management")
|
||||
|
||||
|
||||
class MemoryManagementTask(AsyncTask):
|
||||
"""记忆管理定时任务
|
||||
|
||||
根据Memory_chest中的记忆数量与MAX_MEMORY_NUMBER的比例来决定执行频率:
|
||||
- 小于50%:每600秒执行一次
|
||||
- 大于等于50%:每300秒执行一次
|
||||
|
||||
每次执行时随机选择一个title,执行choose_merge_target和merge_memory,
|
||||
然后删除原始记忆
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
task_name="Memory Management Task",
|
||||
wait_before_start=10, # 启动后等待10秒再开始
|
||||
run_interval=300 # 默认300秒间隔,会根据记忆数量动态调整
|
||||
)
|
||||
self.max_memory_number = global_config.memory.max_memory_number
|
||||
|
||||
async def start_task(self, abort_flag: asyncio.Event):
|
||||
"""重写start_task方法,支持动态调整执行间隔"""
|
||||
if self.wait_before_start > 0:
|
||||
# 等待指定时间后开始任务
|
||||
await asyncio.sleep(self.wait_before_start)
|
||||
|
||||
while not abort_flag.is_set():
|
||||
await self.run()
|
||||
|
||||
# 动态调整执行间隔
|
||||
current_interval = self._calculate_interval()
|
||||
logger.info(f"[记忆管理] 下次执行间隔: {current_interval}秒")
|
||||
|
||||
if current_interval > 0:
|
||||
await asyncio.sleep(current_interval)
|
||||
else:
|
||||
break
|
||||
|
||||
def _calculate_interval(self) -> int:
|
||||
"""根据当前记忆数量计算执行间隔"""
|
||||
try:
|
||||
current_count = self._get_memory_count()
|
||||
percentage = current_count / self.max_memory_number
|
||||
|
||||
if percentage < 0.5:
|
||||
# 小于50%,每600秒执行一次
|
||||
return 3600
|
||||
elif percentage < 0.7:
|
||||
# 大于等于50%,每300秒执行一次
|
||||
return 600
|
||||
else:
|
||||
# 大于等于70%,每120秒执行一次
|
||||
return 120
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[记忆管理] 计算执行间隔时出错: {e}")
|
||||
return 300 # 默认300秒
|
||||
|
||||
def _get_memory_count(self) -> int:
|
||||
"""获取当前记忆数量"""
|
||||
try:
|
||||
count = MemoryChestModel.select().count()
|
||||
logger.debug(f"[记忆管理] 当前记忆数量: {count}")
|
||||
return count
|
||||
except Exception as e:
|
||||
logger.error(f"[记忆管理] 获取记忆数量时出错: {e}")
|
||||
return 0
|
||||
|
||||
async def run(self):
|
||||
"""执行记忆管理任务"""
|
||||
try:
|
||||
logger.info("[记忆管理] 开始执行记忆管理任务")
|
||||
|
||||
# 获取当前记忆数量
|
||||
current_count = self._get_memory_count()
|
||||
percentage = current_count / self.max_memory_number
|
||||
logger.info(f"[记忆管理] 当前记忆数量: {current_count}/{self.max_memory_number} ({percentage:.1%})")
|
||||
|
||||
# 如果记忆数量为0,跳过执行
|
||||
if current_count < 10:
|
||||
logger.info("[记忆管理] 没有太多记忆,跳过执行")
|
||||
return
|
||||
|
||||
# 随机选择一个记忆标题
|
||||
selected_title = self._get_random_memory_title()
|
||||
if not selected_title:
|
||||
logger.warning("[记忆管理] 无法获取随机记忆标题,跳过执行")
|
||||
return
|
||||
|
||||
logger.info(f"[记忆管理] 随机选择的记忆标题: {selected_title}")
|
||||
|
||||
# 执行choose_merge_target获取相关记忆内容
|
||||
related_contents = await global_memory_chest.choose_merge_target(selected_title)
|
||||
if not related_contents:
|
||||
logger.warning("[记忆管理] 未找到相关记忆内容,跳过合并")
|
||||
return
|
||||
|
||||
logger.info(f"[记忆管理] 找到 {len(related_contents)} 条相关记忆")
|
||||
|
||||
# 执行merge_memory合并记忆
|
||||
merged_title, merged_content = await global_memory_chest.merge_memory(related_contents)
|
||||
if not merged_title or not merged_content:
|
||||
logger.warning("[记忆管理] 记忆合并失败,跳过删除")
|
||||
return
|
||||
|
||||
logger.info(f"[记忆管理] 记忆合并成功,新标题: {merged_title}")
|
||||
|
||||
# 删除原始记忆(包括选中的标题和相关的记忆)
|
||||
deleted_count = self._delete_original_memories(selected_title, related_contents)
|
||||
logger.info(f"[记忆管理] 已删除 {deleted_count} 条原始记忆")
|
||||
|
||||
logger.info("[记忆管理] 记忆管理任务完成")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[记忆管理] 执行记忆管理任务时发生错误: {e}", exc_info=True)
|
||||
|
||||
def _get_random_memory_title(self) -> str:
|
||||
"""随机获取一个记忆标题"""
|
||||
try:
|
||||
# 获取所有记忆标题
|
||||
all_titles = global_memory_chest.get_all_titles()
|
||||
if not all_titles:
|
||||
return ""
|
||||
|
||||
# 随机选择一个标题
|
||||
selected_title = random.choice(all_titles)
|
||||
return selected_title
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[记忆管理] 获取随机记忆标题时发生错误: {e}")
|
||||
return ""
|
||||
|
||||
def _delete_original_memories(self, selected_title: str, related_contents: List[str]) -> int:
|
||||
"""删除原始记忆"""
|
||||
try:
|
||||
deleted_count = 0
|
||||
|
||||
# 删除选中的标题对应的记忆
|
||||
try:
|
||||
deleted = MemoryChestModel.delete().where(MemoryChestModel.title == selected_title).execute()
|
||||
if deleted > 0:
|
||||
deleted_count += deleted
|
||||
logger.debug(f"[记忆管理] 删除选中记忆: {selected_title}")
|
||||
except Exception as e:
|
||||
logger.error(f"[记忆管理] 删除选中记忆时出错: {e}")
|
||||
|
||||
# 删除相关记忆(通过内容匹配)
|
||||
for content in related_contents:
|
||||
try:
|
||||
# 通过内容查找并删除对应的记忆
|
||||
memories_to_delete = MemoryChestModel.select().where(MemoryChestModel.content == content)
|
||||
for memory in memories_to_delete:
|
||||
MemoryChestModel.delete().where(MemoryChestModel.id == memory.id).execute()
|
||||
deleted_count += 1
|
||||
logger.debug(f"[记忆管理] 删除相关记忆: {memory.title}")
|
||||
except Exception as e:
|
||||
logger.error(f"[记忆管理] 删除相关记忆时出错: {e}")
|
||||
continue
|
||||
|
||||
return deleted_count
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[记忆管理] 删除原始记忆时发生错误: {e}")
|
||||
return 0
|
||||
|
|
@ -30,6 +30,7 @@ from src.config.official_configs import (
|
|||
RelationshipConfig,
|
||||
ToolConfig,
|
||||
VoiceConfig,
|
||||
MemoryConfig,
|
||||
DebugConfig,
|
||||
)
|
||||
|
||||
|
|
@ -353,6 +354,7 @@ class Config(ConfigBase):
|
|||
maim_message: MaimMessageConfig
|
||||
lpmm_knowledge: LPMMKnowledgeConfig
|
||||
tool: ToolConfig
|
||||
memory: MemoryConfig
|
||||
debug: DebugConfig
|
||||
voice: VoiceConfig
|
||||
|
||||
|
|
|
|||
|
|
@ -101,6 +101,15 @@ class MessageReceiveConfig(ConfigBase):
|
|||
ban_msgs_regex: set[str] = field(default_factory=lambda: set())
|
||||
"""过滤正则表达式列表"""
|
||||
|
||||
@dataclass
|
||||
class MemoryConfig(ConfigBase):
|
||||
"""记忆配置类"""
|
||||
|
||||
max_memory_number: int = 100
|
||||
"""记忆最大数量"""
|
||||
|
||||
max_memory_size: int = 2048
|
||||
"""记忆最大大小"""
|
||||
|
||||
@dataclass
|
||||
class ExpressionConfig(ConfigBase):
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@ from src.mood.mood_manager import mood_manager
|
|||
from src.chat.knowledge import lpmm_start_up
|
||||
from src.chat.memory_system.Hippocampus import hippocampus_manager
|
||||
from src.chat.memory_system.hippocampus_to_memory_chest_task import HippocampusToMemoryChestTask
|
||||
from src.chat.memory_system.memory_management_task import MemoryManagementTask
|
||||
from rich.traceback import install
|
||||
from src.migrate_helper.migrate import check_and_run_migrations
|
||||
# from src.api.main import start_api_server
|
||||
|
|
@ -101,6 +102,10 @@ class MainSystem:
|
|||
# 添加海马体到记忆仓库的转换任务
|
||||
await async_task_manager.add_task(HippocampusToMemoryChestTask())
|
||||
logger.info("海马体到记忆仓库转换任务已启动")
|
||||
|
||||
# 添加记忆管理任务
|
||||
await async_task_manager.add_task(MemoryManagementTask())
|
||||
logger.info("记忆管理任务已启动")
|
||||
|
||||
# await asyncio.sleep(0.5) #防止logger输出飞了
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
[inner]
|
||||
version = "6.15.1"
|
||||
version = "6.16.0"
|
||||
|
||||
#----以下是给开发人员阅读的,如果你只是部署了麦麦,不需要阅读----
|
||||
#如果你想要修改配置文件,请递增version的值
|
||||
|
|
@ -80,6 +80,10 @@ mentioned_bot_reply = true # 是否启用提及必回复
|
|||
max_context_size = 30 # 上下文长度
|
||||
planner_smooth = 5 #规划器平滑,增大数值会减小planner负荷,略微降低反应速度,推荐2-8,0为关闭,必须大于等于0
|
||||
|
||||
[memory]
|
||||
max_memory_number = 100 # 记忆最大数量
|
||||
max_memory_size = 2048 # 记忆最大大小
|
||||
|
||||
[relationship]
|
||||
enable_relationship = true # 是否启用关系系统
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue