fix:更改一些参数

pull/1273/head
SengokuCola 2025-09-28 12:45:17 +08:00
parent 6e7e9be82a
commit 6b25c0295d
6 changed files with 10 additions and 382 deletions

View File

@ -24,7 +24,7 @@ class MemoryChest:
)
self.memory_build_threshold = 30
self.memory_size_limit = 800
self.memory_size_limit = 1024
self.running_content_list = {} # {chat_id: {"content": running_content, "last_update_time": timestamp}}
self.fetched_memory_list = [] # [(chat_id, (question, answer, timestamp)), ...]

View File

@ -20,7 +20,7 @@ class HippocampusToMemoryChestTask(AsyncTask):
def __init__(self):
super().__init__(
task_name="Hippocampus to Memory Chest Task",
wait_before_start=60, # 启动后等待60秒再开始
wait_before_start=10, # 启动后等待60秒再开始
run_interval=60 # 每60秒运行一次
)
@ -41,13 +41,14 @@ class HippocampusToMemoryChestTask(AsyncTask):
# 获取所有节点
all_nodes = list(memory_graph.nodes())
if len(all_nodes) < 5:
if len(all_nodes) < 10:
selected_nodes = all_nodes
logger.info(f"[海马体转换] 当前只有 {len(all_nodes)} 个节点少于5个跳过本次转换")
return
else:
# 随机选择5个节点
selected_nodes = random.sample(all_nodes, 5)
logger.info(f"[海马体转换] 随机选择了 {len(selected_nodes)} 个节点: {selected_nodes}")
# 随机选择5个节点
selected_nodes = random.sample(all_nodes, 10)
logger.info(f"[海马体转换] 随机选择了 {len(selected_nodes)} 个节点: {selected_nodes}")
# 拼接节点内容
content_parts = []

View File

@ -1,241 +0,0 @@
import json
import random
from json_repair import repair_json
from typing import List, Tuple
from src.config.config import global_config, model_config
from src.common.logger import get_logger
from src.common.data_models.database_data_model import DatabaseMessages
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.utils import parse_keywords_string
from src.chat.utils.chat_message_builder import build_readable_messages
from src.chat.memory_system.Hippocampus import hippocampus_manager
from src.llm_models.utils_model import LLMRequest
logger = get_logger("memory_activator")
def get_keywords_from_json(json_str) -> List:
"""
从JSON字符串中提取关键词列表
Args:
json_str: JSON格式的字符串
Returns:
List[str]: 关键词列表
"""
try:
# 使用repair_json修复JSON格式
fixed_json = repair_json(json_str)
# 如果repair_json返回的是字符串需要解析为Python对象
result = json.loads(fixed_json) if isinstance(fixed_json, str) else fixed_json
return result.get("keywords", [])
except Exception as e:
logger.error(f"解析关键词JSON失败: {e}")
return []
def init_prompt():
# --- Group Chat Prompt ---
memory_activator_prompt = """
你需要根据以下信息来挑选合适的记忆编号
以下是一段聊天记录请根据这些信息和下方的记忆挑选和群聊内容有关的记忆编号
聊天记录:
{obs_info_text}
你想要回复的消息:
{target_message}
记忆
{memory_info}
请输出一个json格式包含以下字段
{{
"memory_ids": "记忆1编号,记忆2编号,记忆3编号,......"
}}
不要输出其他多余内容只输出json格式就好
"""
Prompt(memory_activator_prompt, "memory_activator_prompt")
class MemoryActivator:
def __init__(self):
self.key_words_model = LLMRequest(
model_set=model_config.model_task_config.utils_small,
request_type="memory.activator",
)
# 用于记忆选择的 LLM 模型
self.memory_selection_model = LLMRequest(
model_set=model_config.model_task_config.utils_small,
request_type="memory.selection",
)
async def activate_memory_with_chat_history(
self, target_message, chat_history: List[DatabaseMessages]
) -> List[Tuple[str, str]]:
"""
激活记忆
"""
# 如果记忆系统被禁用,直接返回空列表
if not global_config.memory.enable_memory:
return []
keywords_list = set()
for msg in chat_history:
keywords = parse_keywords_string(msg.key_words)
if keywords:
if len(keywords_list) < 30:
# 最多容纳30个关键词
keywords_list.update(keywords)
logger.debug(f"提取关键词: {keywords_list}")
else:
break
if not keywords_list:
logger.debug("没有提取到关键词,返回空记忆列表")
return []
# 从海马体获取相关记忆
related_memory = await hippocampus_manager.get_memory_from_topic(
valid_keywords=list(keywords_list), max_memory_num=5, max_memory_length=3, max_depth=3
)
# logger.info(f"当前记忆关键词: {keywords_list}")
logger.debug(f"获取到的记忆: {related_memory}")
if not related_memory:
logger.debug("海马体没有返回相关记忆")
return []
used_ids = set()
candidate_memories = []
# 为每个记忆分配随机ID并过滤相关记忆
for memory in related_memory:
keyword, content = memory
found = any(kw in content for kw in keywords_list)
if found:
# 随机分配一个不重复的2位数id
while True:
random_id = "{:02d}".format(random.randint(0, 99))
if random_id not in used_ids:
used_ids.add(random_id)
break
candidate_memories.append({"memory_id": random_id, "keyword": keyword, "content": content})
if not candidate_memories:
logger.info("没有找到相关的候选记忆")
return []
# 如果只有少量记忆,直接返回
if len(candidate_memories) <= 2:
logger.debug(f"候选记忆较少({len(candidate_memories)}个),直接返回")
# 转换为 (keyword, content) 格式
return [(mem["keyword"], mem["content"]) for mem in candidate_memories]
return await self._select_memories_with_llm(target_message, chat_history, candidate_memories)
async def _select_memories_with_llm(
self, target_message, chat_history: List[DatabaseMessages], candidate_memories
) -> List[Tuple[str, str]]:
"""
使用 LLM 选择合适的记忆
Args:
target_message: 目标消息
chat_history_prompt: 聊天历史
candidate_memories: 候选记忆列表每个记忆包含 memory_idkeywordcontent
Returns:
List[Tuple[str, str]]: 选择的记忆列表格式为 (keyword, content)
"""
try:
# 构建聊天历史字符串
obs_info_text = build_readable_messages(
chat_history,
replace_bot_name=True,
timestamp_mode="relative",
read_mark=0.0,
show_actions=True,
)
# 构建记忆信息字符串
memory_lines = []
for memory in candidate_memories:
memory_id = memory["memory_id"]
keyword = memory["keyword"]
content = memory["content"]
# 将 content 列表转换为字符串
if isinstance(content, list):
content_str = " | ".join(str(item) for item in content)
else:
content_str = str(content)
memory_lines.append(f"记忆编号 {memory_id}: [关键词: {keyword}] {content_str}")
memory_info = "\n".join(memory_lines)
# 获取并格式化 prompt
prompt_template = await global_prompt_manager.get_prompt_async("memory_activator_prompt")
formatted_prompt = prompt_template.format(
obs_info_text=obs_info_text, target_message=target_message, memory_info=memory_info
)
# 调用 LLM
response, (reasoning_content, model_name, _) = await self.memory_selection_model.generate_response_async(
formatted_prompt, temperature=0.3, max_tokens=150
)
if global_config.debug.show_prompt:
logger.info(f"记忆选择 prompt: {formatted_prompt}")
logger.info(f"LLM 记忆选择响应: {response}")
else:
logger.debug(f"记忆选择 prompt: {formatted_prompt}")
logger.debug(f"LLM 记忆选择响应: {response}")
# 解析响应获取选择的记忆编号
try:
fixed_json = repair_json(response)
# 解析为 Python 对象
result = json.loads(fixed_json) if isinstance(fixed_json, str) else fixed_json
# 提取 memory_ids 字段并解析逗号分隔的编号
if memory_ids_str := result.get("memory_ids", ""):
memory_ids = [mid.strip() for mid in str(memory_ids_str).split(",") if mid.strip()]
# 过滤掉空字符串和无效编号
valid_memory_ids = [mid for mid in memory_ids if mid and len(mid) <= 3]
selected_memory_ids = valid_memory_ids
else:
selected_memory_ids = []
except Exception as e:
logger.error(f"解析记忆选择响应失败: {e}", exc_info=True)
selected_memory_ids = []
# 根据编号筛选记忆
selected_memories = []
memory_id_to_memory = {mem["memory_id"]: mem for mem in candidate_memories}
selected_memories = [
memory_id_to_memory[memory_id] for memory_id in selected_memory_ids if memory_id in memory_id_to_memory
]
logger.info(f"LLM 选择的记忆编号: {selected_memory_ids}")
logger.info(f"最终选择的记忆数量: {len(selected_memories)}")
# 转换为 (keyword, content) 格式
return [(mem["keyword"], mem["content"]) for mem in selected_memories]
except Exception as e:
logger.error(f"LLM 选择记忆时出错: {e}", exc_info=True)
# 出错时返回前3个候选记忆作为备选转换为 (keyword, content) 格式
return [(mem["keyword"], mem["content"]) for mem in candidate_memories[:3]]
init_prompt()

View File

@ -10,7 +10,7 @@
"license": "GPL-v3.0-or-later",
"host_application": {
"min_version": "0.10.1"
"min_version": "0.10.4"
},
"homepage_url": "https://github.com/MaiM-with-u/maibot",
"repository_url": "https://github.com/MaiM-with-u/maibot",

View File

@ -12,132 +12,6 @@ from src.plugin_system.base.base_tool import BaseTool
from typing import Any
logger = get_logger("memory")
def init_prompt():
Prompt(
"""
以下是一些记忆条目的分类
----------------------
{category_list}
----------------------
每一个分类条目类型代表了你对用户"{person_name}"的印象的一个类别
现在你有一条对 {person_name} 的新记忆内容
{memory_point}
请判断该记忆内容是否属于上述分类请给出分类的名称
如果不属于上述分类请输出一个合适的分类名称对新记忆内容进行概括要求分类名具有概括性
注意分类数一般不超过5个
请严格用json格式输出不要输出任何其他内容
{{
"category": "分类名称"
}} """,
"relation_category",
)
Prompt(
"""
以下是有关{category}的现有记忆
----------------------
{memory_list}
----------------------
现在你有一条对 {person_name} 的新记忆内容
{memory_point}
请判断该新记忆内容是否已经存在于现有记忆中你可以对现有进行进行以下修改
注意一般来说记忆内容不超过5个且记忆文本不应太长
1.新增当记忆内容不存在于现有记忆且不存在矛盾请用json格式输出
{{
"new_memory": "需要新增的记忆内容"
}}
2.加深印象如果这个新记忆已经存在于现有记忆中在内容上与现有记忆类似请用json格式输出
{{
"memory_id": 1, #请输出你认为需要加深印象的,与新记忆内容类似的,已经存在的记忆的序号
"integrate_memory": "加深后的记忆内容,合并内容类似的新记忆和旧记忆"
}}
3.整合如果这个新记忆与现有记忆产生矛盾请你结合其他记忆进行整合用json格式输出
{{
"memory_id": 1, #请输出你认为需要整合的,与新记忆存在矛盾的,已经存在的记忆的序号
"integrate_memory": "整合后的记忆内容,合并内容矛盾的新记忆和旧记忆"
}}
现在请你根据情况选出合适的修改方式并输出json不要输出其他内容
""",
"relation_category_update",
)
# class BuildMemoryAction(BaseAction):
# """关系动作 - 构建关系"""
# activation_type = ActionActivationType.LLM_JUDGE
# parallel_action = True
# # 动作基本信息
# action_name = "build_memory"
# action_description = (
# "了解对于某个概念或者某件事的记忆,并存储下来,在之后的聊天中,你可以根据这条记忆来获取相关信息"
# )
# # 动作参数定义
# action_parameters = {
# "concept_name": "需要了解或记忆的概念或事件的名称",
# "concept_description": "需要了解或记忆的概念或事件的描述,需要具体且明确",
# }
# # 动作使用场景
# action_require = [
# "了解对于某个概念或者某件事的记忆,并存储下来,在之后的聊天中,你可以根据这条记忆来获取相关信息",
# "有你不了解的概念",
# "有人要求你记住某个概念或者事件",
# "你对某件事或概念有新的理解,或产生了兴趣",
# ]
# # 关联类型
# associated_types = ["text"]
# async def execute(self) -> Tuple[bool, str]:
# """执行关系动作"""
# try:
# # 1. 获取构建关系的原因
# concept_description = self.action_data.get("concept_description", "")
# logger.info(f"{self.log_prefix} 添加记忆原因: {self.reasoning}")
# concept_name = self.action_data.get("concept_name", "")
# # 2. 获取目标用户信息
# # 对 concept_name 进行jieba分词
# concept_name_tokens = cut_key_words(concept_name)
# # logger.info(f"{self.log_prefix} 对 concept_name 进行分词结果: {concept_name_tokens}")
# filtered_concept_name_tokens = [
# token
# for token in concept_name_tokens
# if all(keyword not in token for keyword in global_config.memory.memory_ban_words)
# ]
# if not filtered_concept_name_tokens:
# logger.warning(f"{self.log_prefix} 过滤后的概念名称列表为空,跳过添加记忆")
# return False, "过滤后的概念名称列表为空,跳过添加记忆"
# similar_topics_dict = (
# hippocampus_manager.get_hippocampus().parahippocampal_gyrus.get_similar_topics_from_keywords(
# filtered_concept_name_tokens
# )
# )
# await hippocampus_manager.get_hippocampus().parahippocampal_gyrus.add_memory_with_similar(
# concept_description, similar_topics_dict
# )
# return True, f"成功添加记忆: {concept_name}"
# except Exception as e:
# logger.error(f"{self.log_prefix} 构建记忆时出错: {e}")
# return False, f"构建记忆时出错: {e}"
class GetMemoryTool(BaseTool):
"""获取用户信息"""
@ -166,8 +40,6 @@ class GetMemoryTool(BaseTool):
return {"content": f"问题:{question},答案:{answer}"}
class GetMemoryAction(BaseAction):
"""关系动作 - 获取记忆"""
@ -217,7 +89,3 @@ class GetMemoryAction(BaseAction):
)
return True, f"成功获取记忆: {answer}"
# 还缺一个关系的太多遗忘和对应的提取
init_prompt()

View File

@ -39,7 +39,7 @@ class MemoryBuildPlugin(BasePlugin):
config_schema: dict = {
"plugin": {
"enabled": ConfigField(type=bool, default=True, description="是否启用插件"),
"config_version": ConfigField(type=str, default="1.1.0", description="配置文件版本"),
"config_version": ConfigField(type=str, default="1.1.1", description="配置文件版本"),
},
}