MaiBot/src/do_tool/tool_can_use/get_knowledge.py

137 lines
5.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

from src.do_tool.tool_can_use.base_tool import BaseTool
from src.plugins.chat.utils import get_embedding
from src.common.database import db
from src.common.logger import get_module_logger
from typing import Dict, Any, Union
logger = get_module_logger("get_knowledge_tool")
class SearchKnowledgeTool(BaseTool):
"""从知识库中搜索相关信息的工具"""
name = "search_knowledge"
description = "从知识库中搜索相关信息"
parameters = {
"type": "object",
"properties": {
"query": {"type": "string", "description": "搜索查询关键词"},
"threshold": {"type": "number", "description": "相似度阈值0.0到1.0之间"},
},
"required": ["query"],
}
async def execute(self, function_args: Dict[str, Any]) -> Dict[str, Any]:
"""执行知识库搜索
Args:
function_args: 工具参数
message_txt: 原始消息文本
Returns:
Dict: 工具执行结果
"""
try:
query = function_args.get("query")
threshold = function_args.get("threshold", 0.4)
# 调用知识库搜索
embedding = await get_embedding(query, request_type="info_retrieval")
if embedding:
knowledge_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
if knowledge_info:
content = f"你知道这些知识: {knowledge_info}"
else:
content = f"你不太了解有关{query}的知识"
return {"name": "search_knowledge", "content": content}
return {"name": "search_knowledge", "content": f"无法获取关于'{query}'的嵌入向量"}
except Exception as e:
logger.error(f"知识库搜索工具执行失败: {str(e)}")
return {"name": "search_knowledge", "content": f"知识库搜索失败: {str(e)}"}
@staticmethod
def get_info_from_db(
query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False
) -> Union[str, list]:
"""从数据库中获取相关信息
Args:
query_embedding: 查询的嵌入向量
limit: 最大返回结果数
threshold: 相似度阈值
return_raw: 是否返回原始结果
Returns:
Union[str, list]: 格式化的信息字符串或原始结果列表
"""
if not query_embedding:
return "" if not return_raw else []
# 使用余弦相似度计算
pipeline = [
{
"$addFields": {
"dotProduct": {
"$reduce": {
"input": {"$range": [0, {"$size": "$embedding"}]},
"initialValue": 0,
"in": {
"$add": [
"$$value",
{
"$multiply": [
{"$arrayElemAt": ["$embedding", "$$this"]},
{"$arrayElemAt": [query_embedding, "$$this"]},
]
},
]
},
}
},
"magnitude1": {
"$sqrt": {
"$reduce": {
"input": "$embedding",
"initialValue": 0,
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
}
}
},
"magnitude2": {
"$sqrt": {
"$reduce": {
"input": query_embedding,
"initialValue": 0,
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
}
}
},
}
},
{"$addFields": {"similarity": {"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]}}},
{
"$match": {
"similarity": {"$gte": threshold} # 只保留相似度大于等于阈值的结果
}
},
{"$sort": {"similarity": -1}},
{"$limit": limit},
{"$project": {"content": 1, "similarity": 1}},
]
results = list(db.knowledges.aggregate(pipeline))
logger.debug(f"知识库查询结果数量: {len(results)}")
if not results:
return "" if not return_raw else []
if return_raw:
return results
else:
# 返回所有找到的内容,用换行分隔
return "\n".join(str(result["content"]) for result in results)
# 注册工具
# register_tool(SearchKnowledgeTool)