mirror of https://github.com/Mai-with-u/MaiBot.git
708 lines
28 KiB
Python
708 lines
28 KiB
Python
import asyncio
|
||
import io
|
||
import json
|
||
import re
|
||
import base64
|
||
from collections.abc import Iterable
|
||
from typing import Callable, Any, Coroutine, Optional
|
||
from json_repair import repair_json
|
||
|
||
from openai import (
|
||
AsyncOpenAI,
|
||
APIConnectionError,
|
||
APIStatusError,
|
||
NOT_GIVEN,
|
||
AsyncStream,
|
||
)
|
||
from openai.types.chat import (
|
||
ChatCompletion,
|
||
ChatCompletionChunk,
|
||
ChatCompletionMessageParam,
|
||
ChatCompletionToolParam,
|
||
)
|
||
from openai.types.chat.chat_completion_chunk import ChoiceDelta
|
||
|
||
from src.config.api_ada_configs import ModelInfo, APIProvider
|
||
from src.common.logger import get_logger
|
||
from .base_client import APIResponse, UsageRecord, BaseClient, client_registry
|
||
from ..exceptions import (
|
||
RespParseException,
|
||
NetworkConnectionError,
|
||
RespNotOkException,
|
||
ReqAbortException,
|
||
EmptyResponseException,
|
||
)
|
||
from ..payload_content.message import Message, RoleType
|
||
from ..payload_content.resp_format import RespFormat
|
||
from ..payload_content.tool_option import ToolOption, ToolParam, ToolCall
|
||
|
||
logger = get_logger("llm_models")
|
||
|
||
|
||
def _convert_messages(messages: list[Message]) -> list[ChatCompletionMessageParam]:
|
||
"""
|
||
转换消息格式 - 将消息转换为OpenAI API所需的格式
|
||
:param messages: 消息列表
|
||
:return: 转换后的消息列表
|
||
"""
|
||
|
||
def _convert_message_item(message: Message) -> ChatCompletionMessageParam:
|
||
"""
|
||
转换单个消息格式
|
||
:param message: 消息对象
|
||
:return: 转换后的消息字典
|
||
"""
|
||
|
||
# 添加Content
|
||
content: str | list[dict[str, Any]]
|
||
if isinstance(message.content, str):
|
||
content = message.content
|
||
elif isinstance(message.content, list):
|
||
content = []
|
||
for item in message.content:
|
||
if isinstance(item, tuple):
|
||
image_format = item[0].lower()
|
||
# 规范 JPEG MIME 类型后缀,统一使用 image/jpeg
|
||
if image_format in ("jpg", "jpeg"):
|
||
mime_suffix = "jpeg"
|
||
else:
|
||
mime_suffix = image_format
|
||
content.append(
|
||
{
|
||
"type": "image_url",
|
||
"image_url": {"url": f"data:image/{mime_suffix};base64,{item[1]}"},
|
||
}
|
||
)
|
||
elif isinstance(item, str):
|
||
content.append({"type": "text", "text": item})
|
||
else:
|
||
raise RuntimeError("无法触及的代码:请使用MessageBuilder类构建消息对象")
|
||
|
||
ret = {
|
||
"role": message.role.value,
|
||
"content": content,
|
||
}
|
||
|
||
if message.role == RoleType.Assistant and getattr(message, "tool_calls", None):
|
||
tool_calls_payload: list[dict[str, Any]] = []
|
||
for call in message.tool_calls or []:
|
||
tool_calls_payload.append(
|
||
{
|
||
"id": call.call_id,
|
||
"type": "function",
|
||
"function": {
|
||
"name": call.func_name,
|
||
"arguments": json.dumps(call.args or {}, ensure_ascii=False),
|
||
},
|
||
}
|
||
)
|
||
ret["tool_calls"] = tool_calls_payload
|
||
if ret["content"] == []:
|
||
ret["content"] = ""
|
||
|
||
# 添加工具调用ID
|
||
if message.role == RoleType.Tool:
|
||
if not message.tool_call_id:
|
||
raise ValueError("无法触及的代码:请使用MessageBuilder类构建消息对象")
|
||
ret["tool_call_id"] = message.tool_call_id
|
||
|
||
return ret # type: ignore
|
||
|
||
return [_convert_message_item(message) for message in messages]
|
||
|
||
|
||
def _convert_tool_options(tool_options: list[ToolOption]) -> list[dict[str, Any]]:
|
||
"""
|
||
转换工具选项格式 - 将工具选项转换为OpenAI API所需的格式
|
||
:param tool_options: 工具选项列表
|
||
:return: 转换后的工具选项列表
|
||
"""
|
||
|
||
def _convert_tool_param(tool_option_param: ToolParam) -> dict[str, Any]:
|
||
"""
|
||
转换单个工具参数格式
|
||
:param tool_option_param: 工具参数对象
|
||
:return: 转换后的工具参数字典
|
||
"""
|
||
# JSON Schema 类型名称修正:
|
||
# - 布尔类型使用 "boolean" 而不是 "bool"
|
||
# - 浮点数使用 "number" 而不是 "float"
|
||
param_type_value = tool_option_param.param_type.value
|
||
if param_type_value == "bool":
|
||
param_type_value = "boolean"
|
||
elif param_type_value == "float":
|
||
param_type_value = "number"
|
||
|
||
return_dict: dict[str, Any] = {
|
||
"type": param_type_value,
|
||
"description": tool_option_param.description,
|
||
}
|
||
if tool_option_param.enum_values:
|
||
return_dict["enum"] = tool_option_param.enum_values
|
||
return return_dict
|
||
|
||
def _convert_tool_option_item(tool_option: ToolOption) -> dict[str, Any]:
|
||
"""
|
||
转换单个工具项格式
|
||
:param tool_option: 工具选项对象
|
||
:return: 转换后的工具选项字典
|
||
"""
|
||
ret: dict[str, Any] = {
|
||
"name": tool_option.name,
|
||
"description": tool_option.description,
|
||
}
|
||
if tool_option.params:
|
||
ret["parameters"] = {
|
||
"type": "object",
|
||
"properties": {param.name: _convert_tool_param(param) for param in tool_option.params},
|
||
"required": [param.name for param in tool_option.params if param.required],
|
||
}
|
||
return ret
|
||
|
||
return [
|
||
{
|
||
"type": "function",
|
||
"function": _convert_tool_option_item(tool_option),
|
||
}
|
||
for tool_option in tool_options
|
||
]
|
||
|
||
|
||
def _process_delta(
|
||
delta: ChoiceDelta,
|
||
has_rc_attr_flag: bool,
|
||
in_rc_flag: bool,
|
||
rc_delta_buffer: io.StringIO,
|
||
fc_delta_buffer: io.StringIO,
|
||
tool_calls_buffer: list[tuple[str, str, io.StringIO]],
|
||
) -> bool:
|
||
# 接收content
|
||
if has_rc_attr_flag:
|
||
# 有独立的推理内容块,则无需考虑content内容的判读
|
||
if hasattr(delta, "reasoning_content") and delta.reasoning_content: # type: ignore
|
||
# 如果有推理内容,则将其写入推理内容缓冲区
|
||
assert isinstance(delta.reasoning_content, str) # type: ignore
|
||
rc_delta_buffer.write(delta.reasoning_content) # type: ignore
|
||
elif delta.content:
|
||
# 如果有正式内容,则将其写入正式内容缓冲区
|
||
fc_delta_buffer.write(delta.content)
|
||
elif hasattr(delta, "content") and delta.content is not None:
|
||
# 没有独立的推理内容块,但有正式内容
|
||
if in_rc_flag:
|
||
# 当前在推理内容块中
|
||
if delta.content == "</think>":
|
||
# 如果当前内容是</think>,则将其视为推理内容的结束标记,退出推理内容块
|
||
in_rc_flag = False
|
||
else:
|
||
# 其他情况视为推理内容,加入推理内容缓冲区
|
||
rc_delta_buffer.write(delta.content)
|
||
elif delta.content == "<think>" and not fc_delta_buffer.getvalue():
|
||
# 如果当前内容是<think>,且正式内容缓冲区为空,说明<think>为输出的首个token
|
||
# 则将其视为推理内容的开始标记,进入推理内容块
|
||
in_rc_flag = True
|
||
else:
|
||
# 其他情况视为正式内容,加入正式内容缓冲区
|
||
fc_delta_buffer.write(delta.content)
|
||
# 接收tool_calls
|
||
if hasattr(delta, "tool_calls") and delta.tool_calls:
|
||
tool_call_delta = delta.tool_calls[0]
|
||
|
||
if tool_call_delta.index >= len(tool_calls_buffer):
|
||
# 调用索引号大于等于缓冲区长度,说明是新的工具调用
|
||
if tool_call_delta.id and tool_call_delta.function and tool_call_delta.function.name:
|
||
tool_calls_buffer.append(
|
||
(
|
||
tool_call_delta.id,
|
||
tool_call_delta.function.name,
|
||
io.StringIO(),
|
||
)
|
||
)
|
||
else:
|
||
logger.warning("工具调用索引号大于等于缓冲区长度,但缺少ID或函数信息。")
|
||
|
||
if tool_call_delta.function and tool_call_delta.function.arguments:
|
||
# 如果有工具调用参数,则添加到对应的工具调用的参数串缓冲区中
|
||
tool_calls_buffer[tool_call_delta.index][2].write(tool_call_delta.function.arguments)
|
||
|
||
return in_rc_flag
|
||
|
||
|
||
def _build_stream_api_resp(
|
||
_fc_delta_buffer: io.StringIO,
|
||
_rc_delta_buffer: io.StringIO,
|
||
_tool_calls_buffer: list[tuple[str, str, io.StringIO]],
|
||
finish_reason: str | None = None,
|
||
) -> APIResponse:
|
||
resp = APIResponse()
|
||
|
||
if _rc_delta_buffer.tell() > 0:
|
||
# 如果推理内容缓冲区不为空,则将其写入APIResponse对象
|
||
resp.reasoning_content = _rc_delta_buffer.getvalue()
|
||
_rc_delta_buffer.close()
|
||
if _fc_delta_buffer.tell() > 0:
|
||
# 如果正式内容缓冲区不为空,则将其写入APIResponse对象
|
||
resp.content = _fc_delta_buffer.getvalue()
|
||
_fc_delta_buffer.close()
|
||
if _tool_calls_buffer:
|
||
# 如果工具调用缓冲区不为空,则将其解析为ToolCall对象列表
|
||
resp.tool_calls = []
|
||
for call_id, function_name, arguments_buffer in _tool_calls_buffer:
|
||
if arguments_buffer.tell() > 0:
|
||
# 如果参数串缓冲区不为空,则解析为JSON对象
|
||
raw_arg_data = arguments_buffer.getvalue()
|
||
arguments_buffer.close()
|
||
try:
|
||
arguments = json.loads(repair_json(raw_arg_data))
|
||
if not isinstance(arguments, dict):
|
||
raise RespParseException(
|
||
None,
|
||
f"响应解析失败,工具调用参数无法解析为字典类型。工具调用参数原始响应:\n{raw_arg_data}",
|
||
)
|
||
except json.JSONDecodeError as e:
|
||
raise RespParseException(
|
||
None,
|
||
f"响应解析失败,无法解析工具调用参数。工具调用参数原始响应:{raw_arg_data}",
|
||
) from e
|
||
else:
|
||
arguments_buffer.close()
|
||
arguments = None
|
||
|
||
resp.tool_calls.append(ToolCall(call_id, function_name, arguments))
|
||
|
||
# 检查 max_tokens 截断(流式的告警改由处理函数统一输出,这里不再输出)
|
||
# 保留 finish_reason 仅用于上层判断
|
||
|
||
if not resp.content and not resp.tool_calls:
|
||
raise EmptyResponseException()
|
||
|
||
return resp
|
||
|
||
|
||
async def _default_stream_response_handler(
|
||
resp_stream: AsyncStream[ChatCompletionChunk],
|
||
interrupt_flag: asyncio.Event | None,
|
||
) -> tuple[APIResponse, Optional[tuple[int, int, int]]]:
|
||
"""
|
||
流式响应处理函数 - 处理OpenAI API的流式响应
|
||
:param resp_stream: 流式响应对象
|
||
:return: APIResponse对象
|
||
"""
|
||
|
||
_has_rc_attr_flag = False # 标记是否有独立的推理内容块
|
||
_in_rc_flag = False # 标记是否在推理内容块中
|
||
_rc_delta_buffer = io.StringIO() # 推理内容缓冲区,用于存储接收到的推理内容
|
||
_fc_delta_buffer = io.StringIO() # 正式内容缓冲区,用于存储接收到的正式内容
|
||
_tool_calls_buffer: list[tuple[str, str, io.StringIO]] = [] # 工具调用缓冲区,用于存储接收到的工具调用
|
||
_usage_record = None # 使用情况记录
|
||
finish_reason: str | None = None # 记录最后的 finish_reason
|
||
_model_name: str | None = None # 记录模型名
|
||
|
||
def _insure_buffer_closed():
|
||
# 确保缓冲区被关闭
|
||
if _rc_delta_buffer and not _rc_delta_buffer.closed:
|
||
_rc_delta_buffer.close()
|
||
if _fc_delta_buffer and not _fc_delta_buffer.closed:
|
||
_fc_delta_buffer.close()
|
||
for _, _, buffer in _tool_calls_buffer:
|
||
if buffer and not buffer.closed:
|
||
buffer.close()
|
||
|
||
async for event in resp_stream:
|
||
if interrupt_flag and interrupt_flag.is_set():
|
||
# 如果中断量被设置,则抛出ReqAbortException
|
||
_insure_buffer_closed()
|
||
raise ReqAbortException("请求被外部信号中断")
|
||
# 空 choices / usage-only 帧的防御
|
||
if not hasattr(event, "choices") or not event.choices:
|
||
if hasattr(event, "usage") and event.usage:
|
||
_usage_record = (
|
||
event.usage.prompt_tokens or 0,
|
||
event.usage.completion_tokens or 0,
|
||
event.usage.total_tokens or 0,
|
||
)
|
||
continue # 跳过本帧,避免访问 choices[0]
|
||
delta = event.choices[0].delta # 获取当前块的delta内容
|
||
|
||
if hasattr(event.choices[0], "finish_reason") and event.choices[0].finish_reason:
|
||
finish_reason = event.choices[0].finish_reason
|
||
|
||
if hasattr(event, "model") and event.model and not _model_name:
|
||
_model_name = event.model # 记录模型名
|
||
|
||
if hasattr(delta, "reasoning_content") and delta.reasoning_content: # type: ignore
|
||
# 标记:有独立的推理内容块
|
||
_has_rc_attr_flag = True
|
||
|
||
_in_rc_flag = _process_delta(
|
||
delta,
|
||
_has_rc_attr_flag,
|
||
_in_rc_flag,
|
||
_rc_delta_buffer,
|
||
_fc_delta_buffer,
|
||
_tool_calls_buffer,
|
||
)
|
||
|
||
if event.usage:
|
||
# 如果有使用情况,则将其存储在APIResponse对象中
|
||
_usage_record = (
|
||
event.usage.prompt_tokens or 0,
|
||
event.usage.completion_tokens or 0,
|
||
event.usage.total_tokens or 0,
|
||
)
|
||
|
||
try:
|
||
resp = _build_stream_api_resp(
|
||
_fc_delta_buffer,
|
||
_rc_delta_buffer,
|
||
_tool_calls_buffer,
|
||
finish_reason=finish_reason,
|
||
)
|
||
# 统一在这里输出 max_tokens 截断的警告,并从 resp 中读取
|
||
if finish_reason == "length":
|
||
# 把模型名塞到 resp.raw_data,后续严格“从 resp 提取”
|
||
try:
|
||
if _model_name:
|
||
resp.raw_data = {"model": _model_name}
|
||
except Exception:
|
||
pass
|
||
model_dbg = None
|
||
try:
|
||
if isinstance(resp.raw_data, dict):
|
||
model_dbg = resp.raw_data.get("model")
|
||
except Exception:
|
||
model_dbg = None
|
||
|
||
# 统一日志格式
|
||
logger.info("模型%s因为超过最大max_token限制,可能仅输出部分内容,可视情况调整" % (model_dbg or ""))
|
||
|
||
return resp, _usage_record
|
||
except Exception:
|
||
# 确保缓冲区被关闭
|
||
_insure_buffer_closed()
|
||
raise
|
||
|
||
|
||
pattern = re.compile(
|
||
r"<think>(?P<think>.*?)</think>(?P<content>.*)|<think>(?P<think_unclosed>.*)|(?P<content_only>.+)",
|
||
re.DOTALL,
|
||
)
|
||
"""用于解析推理内容的正则表达式"""
|
||
|
||
|
||
def _default_normal_response_parser(
|
||
resp: ChatCompletion,
|
||
) -> tuple[APIResponse, Optional[tuple[int, int, int]]]:
|
||
"""
|
||
解析对话补全响应 - 将OpenAI API响应解析为APIResponse对象
|
||
:param resp: 响应对象
|
||
:return: APIResponse对象
|
||
"""
|
||
api_response = APIResponse()
|
||
|
||
# 兼容部分 OpenAI 兼容服务在空回复时返回 choices=None 的情况
|
||
choices = getattr(resp, "choices", None)
|
||
if not choices:
|
||
try:
|
||
model_dbg = getattr(resp, "model", None)
|
||
id_dbg = getattr(resp, "id", None)
|
||
usage_dbg = None
|
||
if hasattr(resp, "usage") and resp.usage:
|
||
usage_dbg = {
|
||
"prompt": getattr(resp.usage, "prompt_tokens", None),
|
||
"completion": getattr(resp.usage, "completion_tokens", None),
|
||
"total": getattr(resp.usage, "total_tokens", None),
|
||
}
|
||
try:
|
||
raw_snippet = str(resp)[:300]
|
||
except Exception:
|
||
raw_snippet = "<unserializable>"
|
||
logger.debug(f"empty choices: model={model_dbg} id={id_dbg} usage={usage_dbg} raw≈{raw_snippet}")
|
||
except Exception:
|
||
# 日志采集失败不应影响控制流
|
||
pass
|
||
# 统一抛出可重试的 EmptyResponseException,触发上层重试逻辑
|
||
raise EmptyResponseException("响应解析失败,choices 为空或缺失")
|
||
message_part = choices[0].message
|
||
|
||
if hasattr(message_part, "reasoning_content") and message_part.reasoning_content: # type: ignore
|
||
# 有有效的推理字段
|
||
api_response.content = message_part.content
|
||
api_response.reasoning_content = message_part.reasoning_content # type: ignore
|
||
elif message_part.content:
|
||
# 提取推理和内容
|
||
match = pattern.match(message_part.content)
|
||
if not match:
|
||
raise RespParseException(resp, "响应解析失败,无法捕获推理内容和输出内容")
|
||
if match.group("think") is not None:
|
||
result = match.group("think").strip(), match.group("content").strip()
|
||
elif match.group("think_unclosed") is not None:
|
||
result = match.group("think_unclosed").strip(), None
|
||
else:
|
||
result = None, match.group("content_only").strip()
|
||
api_response.reasoning_content, api_response.content = result
|
||
|
||
# 提取工具调用
|
||
if message_part.tool_calls:
|
||
api_response.tool_calls = []
|
||
for call in message_part.tool_calls:
|
||
try:
|
||
arguments = json.loads(repair_json(call.function.arguments))
|
||
if not isinstance(arguments, dict):
|
||
raise RespParseException(resp, "响应解析失败,工具调用参数无法解析为字典类型")
|
||
api_response.tool_calls.append(ToolCall(call.id, call.function.name, arguments))
|
||
except json.JSONDecodeError as e:
|
||
raise RespParseException(resp, "响应解析失败,无法解析工具调用参数") from e
|
||
|
||
# 提取Usage信息
|
||
if resp.usage:
|
||
_usage_record = (
|
||
resp.usage.prompt_tokens or 0,
|
||
resp.usage.completion_tokens or 0,
|
||
resp.usage.total_tokens or 0,
|
||
)
|
||
else:
|
||
_usage_record = None
|
||
|
||
# 将原始响应存储在原始数据中
|
||
api_response.raw_data = resp
|
||
|
||
# 检查 max_tokens 截断
|
||
try:
|
||
choice0 = resp.choices[0]
|
||
reason = getattr(choice0, "finish_reason", None)
|
||
if reason and reason == "length":
|
||
# print(resp)
|
||
_model_name = resp.model
|
||
# 统一日志格式
|
||
logger.info("模型%s因为超过最大max_token限制,可能仅输出部分内容,可视情况调整" % (_model_name or ""))
|
||
return api_response, _usage_record
|
||
except Exception as e:
|
||
logger.debug(f"检查 MAX_TOKENS 截断时异常: {e}")
|
||
|
||
if not api_response.content and not api_response.tool_calls:
|
||
raise EmptyResponseException()
|
||
|
||
return api_response, _usage_record
|
||
|
||
|
||
@client_registry.register_client_class("openai")
|
||
class OpenaiClient(BaseClient):
|
||
def __init__(self, api_provider: APIProvider):
|
||
super().__init__(api_provider)
|
||
self.client: AsyncOpenAI = AsyncOpenAI(
|
||
base_url=api_provider.base_url,
|
||
api_key=api_provider.api_key,
|
||
max_retries=0,
|
||
timeout=api_provider.timeout,
|
||
)
|
||
|
||
async def get_response(
|
||
self,
|
||
model_info: ModelInfo,
|
||
message_list: list[Message],
|
||
tool_options: list[ToolOption] | None = None,
|
||
max_tokens: Optional[int] = 1024,
|
||
temperature: Optional[float] = 0.7,
|
||
response_format: RespFormat | None = None,
|
||
stream_response_handler: Optional[
|
||
Callable[
|
||
[AsyncStream[ChatCompletionChunk], asyncio.Event | None],
|
||
Coroutine[Any, Any, tuple[APIResponse, Optional[tuple[int, int, int]]]],
|
||
]
|
||
] = None,
|
||
async_response_parser: Optional[
|
||
Callable[[ChatCompletion], tuple[APIResponse, Optional[tuple[int, int, int]]]]
|
||
] = None,
|
||
interrupt_flag: asyncio.Event | None = None,
|
||
extra_params: dict[str, Any] | None = None,
|
||
) -> APIResponse:
|
||
"""
|
||
获取对话响应
|
||
Args:
|
||
model_info: 模型信息
|
||
message_list: 对话体
|
||
tool_options: 工具选项(可选,默认为None)
|
||
max_tokens: 最大token数(可选,默认为1024)
|
||
temperature: 温度(可选,默认为0.7)
|
||
response_format: 响应格式(可选,默认为 NotGiven )
|
||
stream_response_handler: 流式响应处理函数(可选,默认为default_stream_response_handler)
|
||
async_response_parser: 响应解析函数(可选,默认为default_response_parser)
|
||
interrupt_flag: 中断信号量(可选,默认为None)
|
||
Returns:
|
||
(响应文本, 推理文本, 工具调用, 其他数据)
|
||
"""
|
||
if stream_response_handler is None:
|
||
stream_response_handler = _default_stream_response_handler
|
||
|
||
if async_response_parser is None:
|
||
async_response_parser = _default_normal_response_parser
|
||
|
||
# 将messages构造为OpenAI API所需的格式
|
||
messages: Iterable[ChatCompletionMessageParam] = _convert_messages(message_list)
|
||
# 将tool_options转换为OpenAI API所需的格式
|
||
tools: Iterable[ChatCompletionToolParam] = _convert_tool_options(tool_options) if tool_options else NOT_GIVEN # type: ignore
|
||
|
||
try:
|
||
if model_info.force_stream_mode:
|
||
req_task = asyncio.create_task(
|
||
self.client.chat.completions.create(
|
||
model=model_info.model_identifier,
|
||
messages=messages,
|
||
tools=tools,
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
stream=True,
|
||
response_format=NOT_GIVEN,
|
||
extra_body=extra_params,
|
||
)
|
||
)
|
||
while not req_task.done():
|
||
if interrupt_flag and interrupt_flag.is_set():
|
||
# 如果中断量存在且被设置,则取消任务并抛出异常
|
||
req_task.cancel()
|
||
raise ReqAbortException("请求被外部信号中断")
|
||
await asyncio.sleep(0.1) # 等待0.1秒后再次检查任务&中断信号量状态
|
||
|
||
resp, usage_record = await stream_response_handler(req_task.result(), interrupt_flag)
|
||
else:
|
||
# 发送请求并获取响应
|
||
# start_time = time.time()
|
||
req_task = asyncio.create_task(
|
||
self.client.chat.completions.create(
|
||
model=model_info.model_identifier,
|
||
messages=messages,
|
||
tools=tools,
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
stream=False,
|
||
response_format=NOT_GIVEN,
|
||
extra_body=extra_params,
|
||
)
|
||
)
|
||
while not req_task.done():
|
||
if interrupt_flag and interrupt_flag.is_set():
|
||
# 如果中断量存在且被设置,则取消任务并抛出异常
|
||
req_task.cancel()
|
||
raise ReqAbortException("请求被外部信号中断")
|
||
await asyncio.sleep(0.1) # 等待0.5秒后再次检查任务&中断信号量状态
|
||
|
||
# logger.
|
||
# logger.debug(f"OpenAI API响应(非流式): {req_task.result()}")
|
||
|
||
# logger.info(f"OpenAI请求时间: {model_info.model_identifier} {time.time() - start_time} \n{messages}")
|
||
|
||
resp, usage_record = async_response_parser(req_task.result())
|
||
except APIConnectionError as e:
|
||
# 重封装APIConnectionError为NetworkConnectionError
|
||
raise NetworkConnectionError() from e
|
||
except APIStatusError as e:
|
||
# 重封装APIError为RespNotOkException
|
||
raise RespNotOkException(e.status_code, e.message) from e
|
||
|
||
if usage_record:
|
||
resp.usage = UsageRecord(
|
||
model_name=model_info.name,
|
||
provider_name=model_info.api_provider,
|
||
prompt_tokens=usage_record[0],
|
||
completion_tokens=usage_record[1],
|
||
total_tokens=usage_record[2],
|
||
)
|
||
|
||
# logger.debug(f"OpenAI API响应: {resp}")
|
||
|
||
return resp
|
||
|
||
async def get_embedding(
|
||
self,
|
||
model_info: ModelInfo,
|
||
embedding_input: str,
|
||
extra_params: dict[str, Any] | None = None,
|
||
) -> APIResponse:
|
||
"""
|
||
获取文本嵌入
|
||
:param model_info: 模型信息
|
||
:param embedding_input: 嵌入输入文本
|
||
:return: 嵌入响应
|
||
"""
|
||
try:
|
||
raw_response = await self.client.embeddings.create(
|
||
model=model_info.model_identifier,
|
||
input=embedding_input,
|
||
extra_body=extra_params,
|
||
)
|
||
except APIConnectionError as e:
|
||
# 添加详细的错误信息以便调试
|
||
logger.error(f"OpenAI API连接错误(嵌入模型): {str(e)}")
|
||
logger.error(f"错误类型: {type(e)}")
|
||
if hasattr(e, "__cause__") and e.__cause__:
|
||
logger.error(f"底层错误: {str(e.__cause__)}")
|
||
raise NetworkConnectionError() from e
|
||
except APIStatusError as e:
|
||
# 重封装APIError为RespNotOkException
|
||
raise RespNotOkException(e.status_code) from e
|
||
|
||
response = APIResponse()
|
||
|
||
# 解析嵌入响应
|
||
if len(raw_response.data) > 0:
|
||
response.embedding = raw_response.data[0].embedding
|
||
else:
|
||
raise RespParseException(
|
||
raw_response,
|
||
"响应解析失败,缺失嵌入数据。",
|
||
)
|
||
|
||
# 解析使用情况
|
||
if hasattr(raw_response, "usage"):
|
||
response.usage = UsageRecord(
|
||
model_name=model_info.name,
|
||
provider_name=model_info.api_provider,
|
||
prompt_tokens=raw_response.usage.prompt_tokens or 0,
|
||
completion_tokens=getattr(raw_response.usage, "completion_tokens", 0),
|
||
total_tokens=raw_response.usage.total_tokens or 0,
|
||
)
|
||
|
||
return response
|
||
|
||
async def get_audio_transcriptions(
|
||
self,
|
||
model_info: ModelInfo,
|
||
audio_base64: str,
|
||
extra_params: dict[str, Any] | None = None,
|
||
) -> APIResponse:
|
||
"""
|
||
获取音频转录
|
||
:param model_info: 模型信息
|
||
:param audio_base64: base64编码的音频数据
|
||
:extra_params: 附加的请求参数
|
||
:return: 音频转录响应
|
||
"""
|
||
try:
|
||
raw_response = await self.client.audio.transcriptions.create(
|
||
model=model_info.model_identifier,
|
||
file=("audio.wav", io.BytesIO(base64.b64decode(audio_base64))),
|
||
extra_body=extra_params,
|
||
)
|
||
except APIConnectionError as e:
|
||
raise NetworkConnectionError() from e
|
||
except APIStatusError as e:
|
||
# 重封装APIError为RespNotOkException
|
||
raise RespNotOkException(e.status_code) from e
|
||
response = APIResponse()
|
||
# 解析转录响应
|
||
if hasattr(raw_response, "text"):
|
||
response.content = raw_response.text
|
||
else:
|
||
raise RespParseException(
|
||
raw_response,
|
||
"响应解析失败,缺失转录文本。",
|
||
)
|
||
return response
|
||
|
||
def get_support_image_formats(self) -> list[str]:
|
||
"""
|
||
获取支持的图片格式
|
||
:return: 支持的图片格式列表
|
||
"""
|
||
return ["jpg", "jpeg", "png", "webp", "gif"]
|