MaiBot/src/plugins/heartFC_chat/heartflow_processor.py

225 lines
8.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import time
import traceback
from ..memory_system.Hippocampus import HippocampusManager
from ...config.config import global_config
from ..chat.message import MessageRecv
from ..storage.storage import MessageStorage
from ..chat.utils import is_mentioned_bot_in_message
from maim_message import Seg
from src.heart_flow.heartflow import heartflow
from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
from ..chat.chat_stream import chat_manager
from ..chat.message_buffer import message_buffer
from ..utils.timer_calculator import Timer
from src.plugins.person_info.relationship_manager import relationship_manager
from typing import Optional, Tuple
# 定义日志配置
processor_config = LogConfig(
console_format=CHAT_STYLE_CONFIG["console_format"],
file_format=CHAT_STYLE_CONFIG["file_format"],
)
logger = get_module_logger("heartflow_processor", config=processor_config)
class HeartFCProcessor:
"""心流处理器,负责处理接收到的消息并计算兴趣度"""
def __init__(self):
"""初始化心流处理器,创建消息存储实例"""
self.storage = MessageStorage()
async def _handle_error(self, error: Exception, context: str, message: Optional[MessageRecv] = None) -> None:
"""统一的错误处理函数
Args:
error: 捕获到的异常
context: 错误发生的上下文描述
message: 可选的消息对象,用于记录相关消息内容
"""
logger.error(f"{context}: {error}")
logger.error(traceback.format_exc())
if message and hasattr(message, "raw_message"):
logger.error(f"相关消息原始内容: {message.raw_message}")
async def _process_relationship(self, message: MessageRecv) -> None:
"""处理用户关系逻辑
Args:
message: 消息对象,包含用户信息
"""
platform = message.message_info.platform
user_id = message.message_info.user_info.user_id
nickname = message.message_info.user_info.user_nickname
cardname = message.message_info.user_info.user_cardname or nickname
is_known = await relationship_manager.is_known_some_one(platform, user_id)
if not is_known:
logger.info(f"首次认识用户: {nickname}")
await relationship_manager.first_knowing_some_one(platform, user_id, nickname, cardname, "")
elif not await relationship_manager.is_qved_name(platform, user_id):
logger.info(f"给用户({nickname},{cardname})取名: {nickname}")
await relationship_manager.first_knowing_some_one(platform, user_id, nickname, cardname, "")
async def _calculate_interest(self, message: MessageRecv) -> Tuple[float, bool]:
"""计算消息的兴趣度
Args:
message: 待处理的消息对象
Returns:
Tuple[float, bool]: (兴趣度, 是否被提及)
"""
is_mentioned, _ = is_mentioned_bot_in_message(message)
interested_rate = 0.0
with Timer("记忆激活"):
interested_rate = await HippocampusManager.get_instance().get_activate_from_text(
message.processed_plain_text,
fast_retrieval=True,
)
logger.trace(f"记忆激活率: {interested_rate:.2f}")
if is_mentioned:
interest_increase_on_mention = 1
interested_rate += interest_increase_on_mention
return interested_rate, is_mentioned
def _get_message_type(self, message: MessageRecv) -> str:
"""获取消息类型
Args:
message: 消息对象
Returns:
str: 消息类型
"""
if message.message_segment.type != "seglist":
return message.message_segment.type
if (
isinstance(message.message_segment.data, list)
and all(isinstance(x, Seg) for x in message.message_segment.data)
and len(message.message_segment.data) == 1
):
return message.message_segment.data[0].type
return "seglist"
async def process_message(self, message_data: str) -> None:
"""处理接收到的原始消息数据
主要流程:
1. 消息解析与初始化
2. 消息缓冲处理
3. 过滤检查
4. 兴趣度计算
5. 关系处理
Args:
message_data: 原始消息字符串
"""
message = None
try:
# 1. 消息解析与初始化
message = MessageRecv(message_data)
groupinfo = message.message_info.group_info
userinfo = message.message_info.user_info
messageinfo = message.message_info
# 2. 消息缓冲与流程序化
await message_buffer.start_caching_messages(message)
chat = await chat_manager.get_or_create_stream(
platform=messageinfo.platform,
user_info=userinfo,
group_info=groupinfo,
)
subheartflow = await heartflow.get_or_create_subheartflow(chat.stream_id)
message.update_chat_stream(chat)
await message.process()
# 3. 过滤检查
if self._check_ban_words(message.processed_plain_text, chat, userinfo) or self._check_ban_regex(
message.raw_message, chat, userinfo
):
return
# 4. 缓冲检查
buffer_result = await message_buffer.query_buffer_result(message)
if not buffer_result:
msg_type = self._get_message_type(message)
type_messages = {
"text": f"触发缓冲,消息:{message.processed_plain_text}",
"image": "触发缓冲,表情包/图片等待中",
"seglist": "触发缓冲,消息列表等待中",
}
logger.debug(type_messages.get(msg_type, "触发未知类型缓冲"))
return
# 5. 消息存储
await self.storage.store_message(message, chat)
logger.trace(f"存储成功: {message.processed_plain_text}")
# 6. 兴趣度计算与更新
interested_rate, is_mentioned = await self._calculate_interest(message)
await subheartflow.interest_chatting.increase_interest(value=interested_rate)
subheartflow.interest_chatting.add_interest_dict(message, interested_rate, is_mentioned)
# 7. 日志记录
mes_name = chat.group_info.group_name if chat.group_info else "私聊"
current_time = time.strftime("%H点%M分%S秒", time.localtime(message.message_info.time))
logger.info(
f"[{current_time}][{mes_name}]"
f"{userinfo.user_nickname}:"
f"{message.processed_plain_text}"
f"[兴趣度: {interested_rate:.2f}]"
)
# 8. 关系处理
await self._process_relationship(message)
except Exception as e:
await self._handle_error(e, "消息处理失败", message)
def _check_ban_words(self, text: str, chat, userinfo) -> bool:
"""检查消息是否包含过滤词
Args:
text: 待检查的文本
chat: 聊天对象
userinfo: 用户信息
Returns:
bool: 是否包含过滤词
"""
for word in global_config.ban_words:
if word in text:
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
logger.info(f"[过滤词识别]消息中含有{word}filtered")
return True
return False
def _check_ban_regex(self, text: str, chat, userinfo) -> bool:
"""检查消息是否匹配过滤正则表达式
Args:
text: 待检查的文本
chat: 聊天对象
userinfo: 用户信息
Returns:
bool: 是否匹配过滤正则
"""
for pattern in global_config.ban_msgs_regex:
if pattern.search(text):
chat_name = chat.group_info.group_name if chat.group_info else "私聊"
logger.info(f"[{chat_name}]{userinfo.user_nickname}:{text}")
logger.info(f"[正则表达式过滤]消息匹配到{pattern}filtered")
return True
return False