mirror of https://github.com/Mai-with-u/MaiBot.git
423 lines
16 KiB
Python
423 lines
16 KiB
Python
"""
|
||
聊天内容概括器
|
||
用于累积、打包和压缩聊天记录
|
||
"""
|
||
import asyncio
|
||
import json
|
||
import time
|
||
from typing import List, Optional, Set
|
||
from dataclasses import dataclass
|
||
|
||
from src.common.logger import get_logger
|
||
from src.common.data_models.database_data_model import DatabaseMessages
|
||
from src.config.config import global_config, model_config
|
||
from src.llm_models.utils_model import LLMRequest
|
||
from src.plugin_system.apis import message_api
|
||
from src.chat.utils.chat_message_builder import build_readable_messages
|
||
from src.person_info.person_info import Person
|
||
|
||
logger = get_logger("chat_history_summarizer")
|
||
|
||
|
||
@dataclass
|
||
class MessageBatch:
|
||
"""消息批次"""
|
||
messages: List[DatabaseMessages]
|
||
start_time: float
|
||
end_time: float
|
||
is_preparing: bool = False # 是否处于准备结束模式
|
||
|
||
|
||
class ChatHistorySummarizer:
|
||
"""聊天内容概括器"""
|
||
|
||
def __init__(self, chat_id: str, check_interval: int = 60):
|
||
"""
|
||
初始化聊天内容概括器
|
||
|
||
Args:
|
||
chat_id: 聊天ID
|
||
check_interval: 定期检查间隔(秒),默认60秒
|
||
"""
|
||
self.chat_id = chat_id
|
||
self.log_prefix = f"[ChatHistorySummarizer-{chat_id}]"
|
||
|
||
# 记录时间点,用于计算新消息
|
||
self.last_check_time = time.time()
|
||
|
||
# 当前累积的消息批次
|
||
self.current_batch: Optional[MessageBatch] = None
|
||
|
||
# LLM请求器,用于压缩聊天内容
|
||
self.summarizer_llm = LLMRequest(
|
||
model_set=model_config.model_task_config.utils,
|
||
request_type="chat_history_summarizer"
|
||
)
|
||
|
||
# 后台循环相关
|
||
self.check_interval = check_interval # 检查间隔(秒)
|
||
self._periodic_task: Optional[asyncio.Task] = None
|
||
self._running = False
|
||
|
||
async def process(self, current_time: Optional[float] = None):
|
||
"""
|
||
处理聊天内容概括
|
||
|
||
Args:
|
||
current_time: 当前时间戳,如果为None则使用time.time()
|
||
"""
|
||
if current_time is None:
|
||
current_time = time.time()
|
||
|
||
try:
|
||
logger.info(
|
||
f"{self.log_prefix} 开始处理聊天概括,窗口: {self.last_check_time:.2f} -> {current_time:.2f}"
|
||
)
|
||
# 获取从上次检查时间到当前时间的新消息
|
||
new_messages = message_api.get_messages_by_time_in_chat(
|
||
chat_id=self.chat_id,
|
||
start_time=self.last_check_time,
|
||
end_time=current_time,
|
||
limit=0,
|
||
limit_mode="latest",
|
||
filter_mai=False, # 不过滤bot消息,因为需要检查bot是否发言
|
||
filter_command=False,
|
||
)
|
||
|
||
if not new_messages:
|
||
# 没有新消息,检查是否需要打包
|
||
logger.info(f"{self.log_prefix} 无新增消息,尝试对现有批次执行打包检查")
|
||
if self.current_batch and self.current_batch.messages:
|
||
await self._check_and_package(current_time)
|
||
self.last_check_time = current_time
|
||
return
|
||
|
||
# 有新消息,更新最后检查时间
|
||
self.last_check_time = current_time
|
||
|
||
logger.info(
|
||
f"{self.log_prefix} 获取到 {len(new_messages)} 条新消息,最新消息时间: {new_messages[-1].time if new_messages else 'N/A'}"
|
||
)
|
||
|
||
# 如果有当前批次,添加新消息
|
||
if self.current_batch:
|
||
before_count = len(self.current_batch.messages)
|
||
self.current_batch.messages.extend(new_messages)
|
||
self.current_batch.end_time = current_time
|
||
logger.info(
|
||
f"{self.log_prefix} 扩展现有批次: {before_count} -> {len(self.current_batch.messages)} 条消息,时间范围 {self.current_batch.start_time:.2f}-{self.current_batch.end_time:.2f}"
|
||
)
|
||
else:
|
||
# 创建新批次
|
||
self.current_batch = MessageBatch(
|
||
messages=new_messages,
|
||
start_time=new_messages[0].time if new_messages else current_time,
|
||
end_time=current_time,
|
||
)
|
||
logger.info(
|
||
f"{self.log_prefix} 创建新批次: 消息数 {len(new_messages)},时间范围 {self.current_batch.start_time:.2f}-{self.current_batch.end_time:.2f}"
|
||
)
|
||
|
||
# 检查是否需要打包
|
||
await self._check_and_package(current_time)
|
||
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 处理聊天内容概括时出错: {e}")
|
||
import traceback
|
||
traceback.print_exc()
|
||
|
||
async def _check_and_package(self, current_time: float):
|
||
"""检查是否需要打包"""
|
||
if not self.current_batch or not self.current_batch.messages:
|
||
return
|
||
|
||
messages = self.current_batch.messages
|
||
message_count = len(messages)
|
||
last_message_time = messages[-1].time if messages else current_time
|
||
time_since_last_message = current_time - last_message_time
|
||
|
||
logger.info(
|
||
f"{self.log_prefix} 批次检查: 消息数={message_count}, 距离最后消息时间={time_since_last_message:.2f}s, 准备模式={self.current_batch.is_preparing}"
|
||
)
|
||
|
||
# 检查打包条件
|
||
should_package = False
|
||
|
||
# 条件1: 消息长度超过120,直接打包
|
||
if message_count >= 120:
|
||
should_package = True
|
||
logger.info(f"{self.log_prefix} 消息数量达到120条,开始打包")
|
||
|
||
# 条件2: 最后一条消息的时间和当前时间差>600秒,直接打包
|
||
elif time_since_last_message > 600:
|
||
should_package = True
|
||
logger.info(f"{self.log_prefix} 最后一条消息超过600秒,开始打包")
|
||
|
||
# 条件3: 消息长度超过100,进入准备结束模式
|
||
elif message_count > 100:
|
||
if not self.current_batch.is_preparing:
|
||
self.current_batch.is_preparing = True
|
||
logger.info(f"{self.log_prefix} 消息数量超过100条,进入准备结束模式")
|
||
|
||
# 在准备结束模式下,如果最后一条消息的时间和当前时间差>10秒,就打包
|
||
if time_since_last_message > 10:
|
||
should_package = True
|
||
logger.info(f"{self.log_prefix} 准备结束模式下,最后一条消息超过10秒,开始打包")
|
||
|
||
if should_package:
|
||
await self._package_and_store()
|
||
|
||
async def _package_and_store(self):
|
||
"""打包并存储聊天记录"""
|
||
if not self.current_batch or not self.current_batch.messages:
|
||
return
|
||
|
||
messages = self.current_batch.messages
|
||
start_time = self.current_batch.start_time
|
||
end_time = self.current_batch.end_time
|
||
|
||
logger.info(
|
||
f"{self.log_prefix} 开始打包批次: 消息数={len(messages)}, 时间范围={start_time:.2f}-{end_time:.2f}"
|
||
)
|
||
|
||
# 检查是否有bot发言
|
||
# 第一条消息前推600s到最后一条消息的时间内
|
||
check_start_time = max(start_time - 600, 0)
|
||
check_end_time = end_time
|
||
|
||
# 使用包含边界的时间范围查询
|
||
bot_messages = message_api.get_messages_by_time_in_chat_inclusive(
|
||
chat_id=self.chat_id,
|
||
start_time=check_start_time,
|
||
end_time=check_end_time,
|
||
limit=0,
|
||
limit_mode="latest",
|
||
filter_mai=False,
|
||
filter_command=False,
|
||
)
|
||
|
||
# 检查是否有bot的发言
|
||
has_bot_message = False
|
||
bot_user_id = str(global_config.bot.qq_account)
|
||
for msg in bot_messages:
|
||
if msg.user_info.user_id == bot_user_id:
|
||
has_bot_message = True
|
||
break
|
||
|
||
if not has_bot_message:
|
||
logger.info(
|
||
f"{self.log_prefix} 打包内没有bot发言,丢弃。检查范围: {check_start_time:.2f}-{check_end_time:.2f}"
|
||
)
|
||
self.current_batch = None
|
||
return
|
||
|
||
# 有bot发言,进行压缩和存储
|
||
try:
|
||
# 构建对话原文
|
||
original_text = build_readable_messages(
|
||
messages=messages,
|
||
replace_bot_name=True,
|
||
timestamp_mode="normal_no_YMD",
|
||
read_mark=0.0,
|
||
truncate=False,
|
||
show_actions=False,
|
||
)
|
||
|
||
# 获取参与的所有人的昵称
|
||
participants_set: Set[str] = set()
|
||
for msg in messages:
|
||
# 使用 msg.user_platform(扁平化字段)或 msg.user_info.platform
|
||
platform = getattr(msg, 'user_platform', None) or (msg.user_info.platform if msg.user_info else None) or msg.chat_info.platform
|
||
person = Person(
|
||
platform=platform,
|
||
user_id=msg.user_info.user_id
|
||
)
|
||
person_name = person.person_name
|
||
if person_name:
|
||
participants_set.add(person_name)
|
||
participants = list(participants_set)
|
||
logger.info(
|
||
f"{self.log_prefix} 批次参与者: {participants if participants else '未知'}"
|
||
)
|
||
|
||
# 使用LLM压缩聊天内容
|
||
theme, keywords, summary = await self._compress_with_llm(original_text)
|
||
logger.info(
|
||
f"{self.log_prefix} LLM 压缩完成,主题: {theme}, 关键词数量: {len(keywords)}, 概括长度: {len(summary)}"
|
||
)
|
||
|
||
# 存储到数据库
|
||
await self._store_to_database(
|
||
start_time=start_time,
|
||
end_time=end_time,
|
||
original_text=original_text,
|
||
participants=participants,
|
||
theme=theme,
|
||
keywords=keywords,
|
||
summary=summary,
|
||
)
|
||
|
||
logger.info(f"{self.log_prefix} 成功打包并存储聊天记录,消息数: {len(messages)}, 主题: {theme}")
|
||
|
||
# 清空当前批次
|
||
self.current_batch = None
|
||
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 打包和存储聊天记录时出错: {e}")
|
||
import traceback
|
||
traceback.print_exc()
|
||
# 出错时也清空批次,避免重复处理
|
||
self.current_batch = None
|
||
|
||
async def _compress_with_llm(self, original_text: str) -> tuple[str, List[str], str]:
|
||
"""
|
||
使用LLM压缩聊天内容
|
||
|
||
Returns:
|
||
tuple[str, List[str], str]: (主题, 关键词列表, 概括)
|
||
"""
|
||
prompt = f"""请对以下聊天记录进行概括,提取以下信息:
|
||
|
||
1. 主题:这段对话的主要内容,一个简短的标题(不超过20字)
|
||
2. 关键词:这段对话的关键词,用列表形式返回(3-10个关键词)
|
||
3. 概括:对这段话的平文本概括(50-200字)
|
||
|
||
请以JSON格式返回,格式如下:
|
||
{{
|
||
"theme": "主题",
|
||
"keywords": ["关键词1", "关键词2", ...],
|
||
"summary": "概括内容"
|
||
}}
|
||
|
||
聊天记录:
|
||
{original_text}
|
||
|
||
请直接返回JSON,不要包含其他内容。"""
|
||
|
||
try:
|
||
response, _ = await self.summarizer_llm.generate_response_async(
|
||
prompt=prompt,
|
||
temperature=0.3,
|
||
max_tokens=500,
|
||
)
|
||
|
||
# 解析JSON响应
|
||
# 尝试提取JSON部分
|
||
import re
|
||
json_match = re.search(r'\{[^{}]*"theme"[^{}]*\}', response, re.DOTALL)
|
||
if json_match:
|
||
json_str = json_match.group(0)
|
||
else:
|
||
json_str = response.strip()
|
||
|
||
# 移除可能的markdown代码块标记
|
||
json_str = re.sub(r'```json\s*', '', json_str)
|
||
json_str = re.sub(r'```\s*', '', json_str)
|
||
json_str = json_str.strip()
|
||
|
||
result = json.loads(json_str)
|
||
|
||
theme = result.get("theme", "未命名对话")
|
||
keywords = result.get("keywords", [])
|
||
summary = result.get("summary", "无概括")
|
||
|
||
# 确保keywords是列表
|
||
if isinstance(keywords, str):
|
||
keywords = [keywords]
|
||
|
||
return theme, keywords, summary
|
||
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} LLM压缩聊天内容时出错: {e}")
|
||
logger.error(f"{self.log_prefix} LLM响应: {response if 'response' in locals() else 'N/A'}")
|
||
# 返回默认值
|
||
return "未命名对话", [], "压缩失败,无法生成概括"
|
||
|
||
async def _store_to_database(
|
||
self,
|
||
start_time: float,
|
||
end_time: float,
|
||
original_text: str,
|
||
participants: List[str],
|
||
theme: str,
|
||
keywords: List[str],
|
||
summary: str,
|
||
):
|
||
"""存储到数据库"""
|
||
try:
|
||
from src.common.database.database_model import ChatHistory
|
||
from src.plugin_system.apis import database_api
|
||
|
||
# 准备数据
|
||
data = {
|
||
"chat_id": self.chat_id,
|
||
"start_time": start_time,
|
||
"end_time": end_time,
|
||
"original_text": original_text,
|
||
"participants": json.dumps(participants, ensure_ascii=False),
|
||
"theme": theme,
|
||
"keywords": json.dumps(keywords, ensure_ascii=False),
|
||
"summary": summary,
|
||
}
|
||
|
||
# 使用db_save存储(使用start_time和chat_id作为唯一标识)
|
||
# 由于可能有多条记录,我们使用组合键,但peewee不支持,所以使用start_time作为唯一标识
|
||
# 但为了避免冲突,我们使用组合键:chat_id + start_time
|
||
# 由于peewee不支持组合键,我们直接创建新记录(不提供key_field和key_value)
|
||
saved_record = await database_api.db_save(
|
||
ChatHistory,
|
||
data=data,
|
||
)
|
||
|
||
if saved_record:
|
||
logger.debug(f"{self.log_prefix} 成功存储聊天历史记录到数据库")
|
||
else:
|
||
logger.warning(f"{self.log_prefix} 存储聊天历史记录到数据库失败")
|
||
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 存储到数据库时出错: {e}")
|
||
import traceback
|
||
traceback.print_exc()
|
||
raise
|
||
|
||
async def start(self):
|
||
"""启动后台定期检查循环"""
|
||
if self._running:
|
||
logger.warning(f"{self.log_prefix} 后台循环已在运行,无需重复启动")
|
||
return
|
||
|
||
self._running = True
|
||
self._periodic_task = asyncio.create_task(self._periodic_check_loop())
|
||
logger.info(f"{self.log_prefix} 已启动后台定期检查循环,检查间隔: {self.check_interval}秒")
|
||
|
||
async def stop(self):
|
||
"""停止后台定期检查循环"""
|
||
self._running = False
|
||
if self._periodic_task:
|
||
self._periodic_task.cancel()
|
||
try:
|
||
await self._periodic_task
|
||
except asyncio.CancelledError:
|
||
pass
|
||
self._periodic_task = None
|
||
logger.info(f"{self.log_prefix} 已停止后台定期检查循环")
|
||
|
||
async def _periodic_check_loop(self):
|
||
"""后台定期检查循环"""
|
||
try:
|
||
while self._running:
|
||
# 执行一次检查
|
||
await self.process()
|
||
|
||
# 等待指定间隔后再次检查
|
||
await asyncio.sleep(self.check_interval)
|
||
except asyncio.CancelledError:
|
||
logger.info(f"{self.log_prefix} 后台检查循环被取消")
|
||
raise
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 后台检查循环出错: {e}")
|
||
import traceback
|
||
traceback.print_exc()
|
||
self._running = False
|
||
|