MaiBot/src/plugins/memory_system/memory.py

722 lines
31 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# -*- coding: utf-8 -*-
import os
import jieba
import networkx as nx
import matplotlib.pyplot as plt
from collections import Counter
import datetime
import random
import time
from ..chat.config import global_config
from ...common.database import Database # 使用正确的导入语法
from ..models.utils_model import LLM_request
import math
from ..chat.utils import calculate_information_content, get_cloest_chat_from_db ,find_similar_topics,text_to_vector,cosine_similarity
class Memory_graph:
def __init__(self):
self.G = nx.Graph() # 使用 networkx 的图结构
self.db = Database.get_instance()
def connect_dot(self, concept1, concept2):
# 如果边已存在,增加 strength
if self.G.has_edge(concept1, concept2):
self.G[concept1][concept2]['strength'] = self.G[concept1][concept2].get('strength', 1) + 1
else:
# 如果是新边,初始化 strength 为 1
self.G.add_edge(concept1, concept2, strength=1)
def add_dot(self, concept, memory):
if concept in self.G:
# 如果节点已存在,将新记忆添加到现有列表中
if 'memory_items' in self.G.nodes[concept]:
if not isinstance(self.G.nodes[concept]['memory_items'], list):
# 如果当前不是列表,将其转换为列表
self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']]
self.G.nodes[concept]['memory_items'].append(memory)
else:
self.G.nodes[concept]['memory_items'] = [memory]
else:
# 如果是新节点,创建新的记忆列表
self.G.add_node(concept, memory_items=[memory])
def get_dot(self, concept):
# 检查节点是否存在于图中
if concept in self.G:
# 从图中获取节点数据
node_data = self.G.nodes[concept]
return concept, node_data
return None
def get_related_item(self, topic, depth=1):
if topic not in self.G:
return [], []
first_layer_items = []
second_layer_items = []
# 获取相邻节点
neighbors = list(self.G.neighbors(topic))
# 获取当前节点的记忆项
node_data = self.get_dot(topic)
if node_data:
concept, data = node_data
if 'memory_items' in data:
memory_items = data['memory_items']
if isinstance(memory_items, list):
first_layer_items.extend(memory_items)
else:
first_layer_items.append(memory_items)
# 只在depth=2时获取第二层记忆
if depth >= 2:
# 获取相邻节点的记忆项
for neighbor in neighbors:
node_data = self.get_dot(neighbor)
if node_data:
concept, data = node_data
if 'memory_items' in data:
memory_items = data['memory_items']
if isinstance(memory_items, list):
second_layer_items.extend(memory_items)
else:
second_layer_items.append(memory_items)
return first_layer_items, second_layer_items
@property
def dots(self):
# 返回所有节点对应的 Memory_dot 对象
return [self.get_dot(node) for node in self.G.nodes()]
def forget_topic(self, topic):
"""随机删除指定话题中的一条记忆,如果话题没有记忆则移除该话题节点"""
if topic not in self.G:
return None
# 获取话题节点数据
node_data = self.G.nodes[topic]
# 如果节点存在memory_items
if 'memory_items' in node_data:
memory_items = node_data['memory_items']
# 确保memory_items是列表
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
# 如果有记忆项可以删除
if memory_items:
# 随机选择一个记忆项删除
removed_item = random.choice(memory_items)
memory_items.remove(removed_item)
# 更新节点的记忆项
if memory_items:
self.G.nodes[topic]['memory_items'] = memory_items
else:
# 如果没有记忆项了,删除整个节点
self.G.remove_node(topic)
return removed_item
return None
# 海马体
class Hippocampus:
def __init__(self,memory_graph:Memory_graph):
self.memory_graph = memory_graph
self.llm_model_get_topic = LLM_request(model = global_config.llm_normal_minor,temperature=0.5)
self.llm_model_summary = LLM_request(model = global_config.llm_normal,temperature=0.5)
def get_all_node_names(self) -> list:
"""获取记忆图中所有节点的名字列表
Returns:
list: 包含所有节点名字的列表
"""
return list(self.memory_graph.G.nodes())
def calculate_node_hash(self, concept, memory_items):
"""计算节点的特征值"""
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
sorted_items = sorted(memory_items)
content = f"{concept}:{'|'.join(sorted_items)}"
return hash(content)
def calculate_edge_hash(self, source, target):
"""计算边的特征值"""
nodes = sorted([source, target])
return hash(f"{nodes[0]}:{nodes[1]}")
def get_memory_sample(self,chat_size=20,time_frequency:dict={'near':2,'mid':4,'far':3}):
current_timestamp = datetime.datetime.now().timestamp()
chat_text = []
#短期1h 中期4h 长期24h
for _ in range(time_frequency.get('near')): # 循环10次
random_time = current_timestamp - random.randint(1, 3600) # 随机时间
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
for _ in range(time_frequency.get('mid')): # 循环10次
random_time = current_timestamp - random.randint(3600, 3600*4) # 随机时间
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
for _ in range(time_frequency.get('far')): # 循环10次
random_time = current_timestamp - random.randint(3600*4, 3600*24) # 随机时间
chat_ = get_cloest_chat_from_db(db=self.memory_graph.db, length=chat_size, timestamp=random_time)
chat_text.append(chat_)
return [text for text in chat_text if text]
async def memory_compress(self, input_text, compress_rate=0.1):
print(input_text)
#获取topics
topic_num = self.calculate_topic_num(input_text, compress_rate)
topics_response = await self.llm_model_get_topic.generate_response(self.find_topic_llm(input_text, topic_num))
# 修改话题处理逻辑
# 定义需要过滤的关键词
filter_keywords = ['表情包', '图片', '回复', '聊天记录']
# 过滤topics
topics = [topic.strip() for topic in topics_response[0].replace("", ",").replace("", ",").replace(" ", ",").split(",") if topic.strip()]
filtered_topics = [topic for topic in topics if not any(keyword in topic for keyword in filter_keywords)]
# print(f"原始话题: {topics}")
print(f"过滤后话题: {filtered_topics}")
# 使用过滤后的话题继续处理
tasks = []
for topic in filtered_topics:
topic_what_prompt = self.topic_what(input_text, topic)
# 创建异步任务
task = self.llm_model_summary.generate_response_async(topic_what_prompt)
tasks.append((topic.strip(), task))
# 等待所有任务完成
compressed_memory = set()
for topic, task in tasks:
response = await task
if response:
compressed_memory.add((topic, response[0]))
return compressed_memory
def calculate_topic_num(self,text, compress_rate):
"""计算文本的话题数量"""
information_content = calculate_information_content(text)
topic_by_length = text.count('\n')*compress_rate
topic_by_information_content = max(1, min(5, int((information_content-3) * 2)))
topic_num = int((topic_by_length + topic_by_information_content)/2)
print(f"topic_by_length: {topic_by_length}, topic_by_information_content: {topic_by_information_content}, topic_num: {topic_num}")
return topic_num
async def operation_build_memory(self,chat_size=20):
# 最近消息获取频率
time_frequency = {'near':2,'mid':4,'far':2}
memory_sample = self.get_memory_sample(chat_size,time_frequency)
for i, input_text in enumerate(memory_sample, 1):
# 加载进度可视化
all_topics = []
progress = (i / len(memory_sample)) * 100
bar_length = 30
filled_length = int(bar_length * i // len(memory_sample))
bar = '' * filled_length + '-' * (bar_length - filled_length)
print(f"\n进度: [{bar}] {progress:.1f}% ({i}/{len(memory_sample)})")
# 生成压缩后记忆 ,表现为 (话题,记忆) 的元组
compressed_memory = set()
compress_rate = 0.1
compressed_memory = await self.memory_compress(input_text, compress_rate)
print(f"\033[1;33m压缩后记忆数量\033[0m: {len(compressed_memory)}")
# 将记忆加入到图谱中
for topic, memory in compressed_memory:
print(f"\033[1;32m添加节点\033[0m: {topic}")
self.memory_graph.add_dot(topic, memory)
all_topics.append(topic) # 收集所有话题
for i in range(len(all_topics)):
for j in range(i + 1, len(all_topics)):
print(f"\033[1;32m连接节点\033[0m: {all_topics[i]}{all_topics[j]}")
self.memory_graph.connect_dot(all_topics[i], all_topics[j])
self.sync_memory_to_db()
def sync_memory_to_db(self):
"""检查并同步内存中的图结构与数据库"""
# 获取数据库中所有节点和内存中所有节点
db_nodes = list(self.memory_graph.db.db.graph_data.nodes.find())
memory_nodes = list(self.memory_graph.G.nodes(data=True))
# 转换数据库节点为字典格式,方便查找
db_nodes_dict = {node['concept']: node for node in db_nodes}
# 检查并更新节点
for concept, data in memory_nodes:
memory_items = data.get('memory_items', [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
# 计算内存中节点的特征值
memory_hash = self.calculate_node_hash(concept, memory_items)
if concept not in db_nodes_dict:
# 数据库中缺少的节点,添加
node_data = {
'concept': concept,
'memory_items': memory_items,
'hash': memory_hash
}
self.memory_graph.db.db.graph_data.nodes.insert_one(node_data)
else:
# 获取数据库中节点的特征值
db_node = db_nodes_dict[concept]
db_hash = db_node.get('hash', None)
# 如果特征值不同,则更新节点
if db_hash != memory_hash:
self.memory_graph.db.db.graph_data.nodes.update_one(
{'concept': concept},
{'$set': {
'memory_items': memory_items,
'hash': memory_hash
}}
)
# 检查并删除数据库中多余的节点
memory_concepts = set(node[0] for node in memory_nodes)
for db_node in db_nodes:
if db_node['concept'] not in memory_concepts:
self.memory_graph.db.db.graph_data.nodes.delete_one({'concept': db_node['concept']})
# 处理边的信息
db_edges = list(self.memory_graph.db.db.graph_data.edges.find())
memory_edges = list(self.memory_graph.G.edges())
# 创建边的哈希值字典
db_edge_dict = {}
for edge in db_edges:
edge_hash = self.calculate_edge_hash(edge['source'], edge['target'])
db_edge_dict[(edge['source'], edge['target'])] = {
'hash': edge_hash,
'strength': edge.get('strength', 1)
}
# 检查并更新边
for source, target in memory_edges:
edge_hash = self.calculate_edge_hash(source, target)
edge_key = (source, target)
strength = self.memory_graph.G[source][target].get('strength', 1)
if edge_key not in db_edge_dict:
# 添加新边
edge_data = {
'source': source,
'target': target,
'strength': strength,
'hash': edge_hash
}
self.memory_graph.db.db.graph_data.edges.insert_one(edge_data)
else:
# 检查边的特征值是否变化
if db_edge_dict[edge_key]['hash'] != edge_hash:
self.memory_graph.db.db.graph_data.edges.update_one(
{'source': source, 'target': target},
{'$set': {
'hash': edge_hash,
'strength': strength
}}
)
# 删除多余的边
memory_edge_set = set(memory_edges)
for edge_key in db_edge_dict:
if edge_key not in memory_edge_set:
source, target = edge_key
self.memory_graph.db.db.graph_data.edges.delete_one({
'source': source,
'target': target
})
def sync_memory_from_db(self):
"""从数据库同步数据到内存中的图结构"""
# 清空当前图
self.memory_graph.G.clear()
# 从数据库加载所有节点
nodes = self.memory_graph.db.db.graph_data.nodes.find()
for node in nodes:
concept = node['concept']
memory_items = node.get('memory_items', [])
# 确保memory_items是列表
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
# 添加节点到图中
self.memory_graph.G.add_node(concept, memory_items=memory_items)
# 从数据库加载所有边
edges = self.memory_graph.db.db.graph_data.edges.find()
for edge in edges:
source = edge['source']
target = edge['target']
strength = edge.get('strength', 1) # 获取 strength默认为 1
# 只有当源节点和目标节点都存在时才添加边
if source in self.memory_graph.G and target in self.memory_graph.G:
self.memory_graph.G.add_edge(source, target, strength=strength)
async def operation_forget_topic(self, percentage=0.1):
"""随机选择图中一定比例的节点进行检查,根据条件决定是否遗忘"""
# 获取所有节点
all_nodes = list(self.memory_graph.G.nodes())
# 计算要检查的节点数量
check_count = max(1, int(len(all_nodes) * percentage))
# 随机选择节点
nodes_to_check = random.sample(all_nodes, check_count)
forgotten_nodes = []
for node in nodes_to_check:
# 获取节点的连接数
connections = self.memory_graph.G.degree(node)
# 获取节点的内容条数
memory_items = self.memory_graph.G.nodes[node].get('memory_items', [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
content_count = len(memory_items)
# 检查连接强度
weak_connections = True
if connections > 1: # 只有当连接数大于1时才检查强度
for neighbor in self.memory_graph.G.neighbors(node):
strength = self.memory_graph.G[node][neighbor].get('strength', 1)
if strength > 2:
weak_connections = False
break
# 如果满足遗忘条件
if (connections <= 1 and weak_connections) or content_count <= 2:
removed_item = self.memory_graph.forget_topic(node)
if removed_item:
forgotten_nodes.append((node, removed_item))
print(f"遗忘节点 {node} 的记忆: {removed_item}")
# 同步到数据库
if forgotten_nodes:
self.sync_memory_to_db()
print(f"完成遗忘操作,共遗忘 {len(forgotten_nodes)} 个节点的记忆")
else:
print("本次检查没有节点满足遗忘条件")
async def merge_memory(self, topic):
"""
对指定话题的记忆进行合并压缩
Args:
topic: 要合并的话题节点
"""
# 获取节点的记忆项
memory_items = self.memory_graph.G.nodes[topic].get('memory_items', [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
# 如果记忆项不足,直接返回
if len(memory_items) < 10:
return
# 随机选择10条记忆
selected_memories = random.sample(memory_items, 10)
# 拼接成文本
merged_text = "\n".join(selected_memories)
print(f"\n[合并记忆] 话题: {topic}")
print(f"选择的记忆:\n{merged_text}")
# 使用memory_compress生成新的压缩记忆
compressed_memories = await self.memory_compress(merged_text, 0.1)
# 从原记忆列表中移除被选中的记忆
for memory in selected_memories:
memory_items.remove(memory)
# 添加新的压缩记忆
for _, compressed_memory in compressed_memories:
memory_items.append(compressed_memory)
print(f"添加压缩记忆: {compressed_memory}")
# 更新节点的记忆项
self.memory_graph.G.nodes[topic]['memory_items'] = memory_items
print(f"完成记忆合并,当前记忆数量: {len(memory_items)}")
async def operation_merge_memory(self, percentage=0.1):
"""
随机检查一定比例的节点对内容数量超过100的节点进行记忆合并
Args:
percentage: 要检查的节点比例默认为0.110%
"""
# 获取所有节点
all_nodes = list(self.memory_graph.G.nodes())
# 计算要检查的节点数量
check_count = max(1, int(len(all_nodes) * percentage))
# 随机选择节点
nodes_to_check = random.sample(all_nodes, check_count)
merged_nodes = []
for node in nodes_to_check:
# 获取节点的内容条数
memory_items = self.memory_graph.G.nodes[node].get('memory_items', [])
if not isinstance(memory_items, list):
memory_items = [memory_items] if memory_items else []
content_count = len(memory_items)
# 如果内容数量超过100进行合并
if content_count > 100:
print(f"\n检查节点: {node}, 当前记忆数量: {content_count}")
await self.merge_memory(node)
merged_nodes.append(node)
# 同步到数据库
if merged_nodes:
self.sync_memory_to_db()
print(f"\n完成记忆合并操作,共处理 {len(merged_nodes)} 个节点")
else:
print("\n本次检查没有需要合并的节点")
def find_topic_llm(self,text, topic_num):
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个关键的概念,可以是名词,动词,或者特定人物,帮我列出来,用逗号,隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要有序号,不要告诉我其他内容。'
return prompt
def topic_what(self,text, topic):
prompt = f'这是一段文字:{text}。我想让你基于这段文字来概括"{topic}"这个概念,帮我总结成一句自然的话,可以包含时间和人物,以及具体的观点。只输出这句话就好'
return prompt
async def _identify_topics(self, text: str) -> list:
"""从文本中识别可能的主题
Args:
text: 输入文本
Returns:
list: 识别出的主题列表
"""
topics_response = await self.llm_model_get_topic.generate_response(self.find_topic_llm(text, 5))
# print(f"话题: {topics_response[0]}")
topics = [topic.strip() for topic in topics_response[0].replace("", ",").replace("", ",").replace(" ", ",").split(",") if topic.strip()]
# print(f"话题: {topics}")
return topics
def _find_similar_topics(self, topics: list, similarity_threshold: float = 0.4, debug_info: str = "") -> list:
"""查找与给定主题相似的记忆主题
Args:
topics: 主题列表
similarity_threshold: 相似度阈值
debug_info: 调试信息前缀
Returns:
list: (主题, 相似度) 元组列表
"""
all_memory_topics = self.get_all_node_names()
all_similar_topics = []
# 计算每个识别出的主题与记忆主题的相似度
for topic in topics:
if debug_info:
print(f"\033[1;32m[{debug_info}]\033[0m 正在思考有没有见过: {topic}")
topic_vector = text_to_vector(topic)
has_similar_topic = False
for memory_topic in all_memory_topics:
memory_vector = text_to_vector(memory_topic)
# 获取所有唯一词
all_words = set(topic_vector.keys()) | set(memory_vector.keys())
# 构建向量
v1 = [topic_vector.get(word, 0) for word in all_words]
v2 = [memory_vector.get(word, 0) for word in all_words]
# 计算相似度
similarity = cosine_similarity(v1, v2)
if similarity >= similarity_threshold:
has_similar_topic = True
if debug_info:
print(f"\033[1;32m[{debug_info}]\033[0m 找到相似主题: {topic} -> {memory_topic} (相似度: {similarity:.2f})")
all_similar_topics.append((memory_topic, similarity))
if not has_similar_topic and debug_info:
print(f"\033[1;31m[{debug_info}]\033[0m 没有见过: {topic} ,呃呃")
return all_similar_topics
def _get_top_topics(self, similar_topics: list, max_topics: int = 5) -> list:
"""获取相似度最高的主题
Args:
similar_topics: (主题, 相似度) 元组列表
max_topics: 最大主题数量
Returns:
list: (主题, 相似度) 元组列表
"""
seen_topics = set()
top_topics = []
for topic, score in sorted(similar_topics, key=lambda x: x[1], reverse=True):
if topic not in seen_topics and len(top_topics) < max_topics:
seen_topics.add(topic)
top_topics.append((topic, score))
return top_topics
async def memory_activate_value(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.3) -> int:
"""计算输入文本对记忆的激活程度"""
print(f"\033[1;32m[记忆激活]\033[0m 开始计算文本的记忆激活度: {text}")
# 识别主题
identified_topics = await self._identify_topics(text)
print(f"\033[1;32m[记忆激活]\033[0m 识别出的主题: {identified_topics}")
if not identified_topics:
# print(f"\033[1;32m[记忆激活]\033[0m 未识别出主题,返回0")
return 0
# 查找相似主题
all_similar_topics = self._find_similar_topics(
identified_topics,
similarity_threshold=similarity_threshold,
debug_info="记忆激活"
)
if not all_similar_topics:
print(f"\033[1;32m[记忆激活]\033[0m 未找到相似主题,返回0")
return 0
# 获取最相关的主题
top_topics = self._get_top_topics(all_similar_topics, max_topics)
# 如果只找到一个主题,进行惩罚
if len(top_topics) == 1:
topic, score = top_topics[0]
activation = int(score * 50) # 单主题情况下,直接用相似度*50作为激活值
print(f"\033[1;32m[记忆激活]\033[0m 只找到一个主题,进行惩罚:")
print(f"\033[1;32m[记忆激活]\033[0m - 主题: {topic}")
print(f"\033[1;32m[记忆激活]\033[0m - 相似度: {score:.3f}")
print(f"\033[1;32m[记忆激活]\033[0m - 最终激活值: {activation}")
return activation
# 计算关键词匹配率
matched_topics = set()
topic_similarities = {}
print(f"\033[1;32m[记忆激活]\033[0m 计算关键词匹配情况:")
for memory_topic, similarity in top_topics:
# 对每个记忆主题,检查它与哪些输入主题相似
for input_topic in identified_topics:
topic_vector = text_to_vector(input_topic)
memory_vector = text_to_vector(memory_topic)
all_words = set(topic_vector.keys()) | set(memory_vector.keys())
v1 = [topic_vector.get(word, 0) for word in all_words]
v2 = [memory_vector.get(word, 0) for word in all_words]
sim = cosine_similarity(v1, v2)
if sim >= similarity_threshold:
matched_topics.add(input_topic)
topic_similarities[input_topic] = max(topic_similarities.get(input_topic, 0), sim)
print(f"\033[1;32m[记忆激活]\033[0m - 输入主题「{input_topic}」匹配到记忆「{memory_topic}」, 相似度: {sim:.3f}")
# 计算主题匹配率
topic_match = len(matched_topics) / len(identified_topics)
print(f"\033[1;32m[记忆激活]\033[0m 主题匹配率:")
print(f"\033[1;32m[记忆激活]\033[0m - 匹配主题数: {len(matched_topics)}")
print(f"\033[1;32m[记忆激活]\033[0m - 总主题数: {len(identified_topics)}")
print(f"\033[1;32m[记忆激活]\033[0m - 匹配率: {topic_match:.3f}")
# 计算匹配主题的平均相似度
average_similarities = sum(topic_similarities.values()) / len(topic_similarities) if topic_similarities else 0
print(f"\033[1;32m[记忆激活]\033[0m 平均相似度:")
print(f"\033[1;32m[记忆激活]\033[0m - 各主题相似度: {[f'{k}:{v:.3f}' for k,v in topic_similarities.items()]}")
print(f"\033[1;32m[记忆激活]\033[0m - 平均相似度: {average_similarities:.3f}")
# 计算最终激活值
activation = (topic_match + average_similarities) / 2 * 100
print(f"\033[1;32m[记忆激活]\033[0m 最终激活值: {int(activation)}")
return int(activation)
async def get_relevant_memories(self, text: str, max_topics: int = 5, similarity_threshold: float = 0.4, max_memory_num: int = 5) -> list:
"""根据输入文本获取相关的记忆内容"""
# 识别主题
identified_topics = await self._identify_topics(text)
# 查找相似主题
all_similar_topics = self._find_similar_topics(
identified_topics,
similarity_threshold=similarity_threshold,
debug_info="记忆检索"
)
# 获取最相关的主题
relevant_topics = self._get_top_topics(all_similar_topics, max_topics)
# 获取相关记忆内容
relevant_memories = []
for topic, score in relevant_topics:
# 获取该主题的记忆内容
first_layer, _ = self.memory_graph.get_related_item(topic, depth=1)
if first_layer:
# 如果记忆条数超过限制,随机选择指定数量的记忆
if len(first_layer) > max_memory_num/2:
first_layer = random.sample(first_layer, max_memory_num)
# 为每条记忆添加来源主题和相似度信息
for memory in first_layer:
relevant_memories.append({
'topic': topic,
'similarity': score,
'content': memory
})
# 如果记忆数量超过5个,随机选择5个
# 按相似度排序
relevant_memories.sort(key=lambda x: x['similarity'], reverse=True)
if len(relevant_memories) > max_memory_num:
relevant_memories = random.sample(relevant_memories, max_memory_num)
return relevant_memories
def segment_text(text):
seg_text = list(jieba.cut(text))
return seg_text
from nonebot import get_driver
driver = get_driver()
config = driver.config
start_time = time.time()
Database.initialize(
host= config.MONGODB_HOST,
port= config.MONGODB_PORT,
db_name= config.DATABASE_NAME,
username= config.MONGODB_USERNAME,
password= config.MONGODB_PASSWORD,
auth_source=config.MONGODB_AUTH_SOURCE
)
#创建记忆图
memory_graph = Memory_graph()
#创建海马体
hippocampus = Hippocampus(memory_graph)
#从数据库加载记忆图
hippocampus.sync_memory_from_db()
end_time = time.time()
print(f"\033[32m[加载海马体耗时: {end_time - start_time:.2f} 秒]\033[0m")