mirror of https://github.com/Mai-with-u/MaiBot.git
523 lines
27 KiB
Python
523 lines
27 KiB
Python
import time
|
||
import traceback
|
||
from typing import List, Optional, Dict
|
||
import asyncio
|
||
from asyncio import Lock
|
||
from ...moods.moods import MoodManager
|
||
from ....config.config import global_config
|
||
from ...chat.emoji_manager import emoji_manager
|
||
from .heartFC__generator import ResponseGenerator
|
||
from ...chat.message import MessageSending, MessageRecv, MessageThinking, MessageSet
|
||
from .messagesender import MessageManager
|
||
from ...chat.utils_image import image_path_to_base64
|
||
from ...message import UserInfo, Seg
|
||
from src.heart_flow.heartflow import heartflow
|
||
from src.common.logger import get_module_logger, CHAT_STYLE_CONFIG, LogConfig
|
||
from ...person_info.relationship_manager import relationship_manager
|
||
from src.plugins.respon_info_catcher.info_catcher import info_catcher_manager
|
||
from ...utils.timer_calculater import Timer
|
||
from src.do_tool.tool_use import ToolUser
|
||
from .interest import InterestManager
|
||
from src.plugins.chat.chat_stream import chat_manager
|
||
from src.plugins.chat.message import BaseMessageInfo
|
||
from .pf_chatting import PFChatting
|
||
|
||
# 定义日志配置
|
||
chat_config = LogConfig(
|
||
console_format=CHAT_STYLE_CONFIG["console_format"],
|
||
file_format=CHAT_STYLE_CONFIG["file_format"],
|
||
)
|
||
|
||
logger = get_module_logger("heartFC_chat", config=chat_config)
|
||
|
||
# 新增常量
|
||
INTEREST_MONITOR_INTERVAL_SECONDS = 1
|
||
|
||
class HeartFC_Chat:
|
||
_instance = None # For potential singleton access if needed by MessageManager
|
||
|
||
def __init__(self):
|
||
# --- Updated Init ---
|
||
if HeartFC_Chat._instance is not None:
|
||
# Prevent re-initialization if used as a singleton
|
||
return
|
||
self.logger = logger # Make logger accessible via self
|
||
self.gpt = ResponseGenerator()
|
||
self.mood_manager = MoodManager.get_instance()
|
||
self.mood_manager.start_mood_update()
|
||
self.tool_user = ToolUser()
|
||
self.interest_manager = InterestManager()
|
||
self._interest_monitor_task: Optional[asyncio.Task] = None
|
||
# --- New PFChatting Management ---
|
||
self.pf_chatting_instances: Dict[str, PFChatting] = {}
|
||
self._pf_chatting_lock = Lock()
|
||
# --- End New PFChatting Management ---
|
||
HeartFC_Chat._instance = self # Register instance
|
||
# --- End Updated Init ---
|
||
|
||
# --- Added Class Method for Singleton Access ---
|
||
@classmethod
|
||
def get_instance(cls):
|
||
return cls._instance
|
||
# --- End Added Class Method ---
|
||
|
||
async def start(self):
|
||
"""启动异步任务,如兴趣监控器"""
|
||
logger.info("HeartFC_Chat 正在启动异步任务...")
|
||
await self.interest_manager.start_background_tasks()
|
||
self._initialize_monitor_task()
|
||
logger.info("HeartFC_Chat 异步任务启动完成")
|
||
|
||
def _initialize_monitor_task(self):
|
||
"""启动后台兴趣监控任务,可以检查兴趣是否足以开启心流对话"""
|
||
if self._interest_monitor_task is None or self._interest_monitor_task.done():
|
||
try:
|
||
loop = asyncio.get_running_loop()
|
||
self._interest_monitor_task = loop.create_task(self._interest_monitor_loop())
|
||
logger.info(f"兴趣监控任务已创建。监控间隔: {INTEREST_MONITOR_INTERVAL_SECONDS}秒。")
|
||
except RuntimeError:
|
||
logger.error("创建兴趣监控任务失败:没有运行中的事件循环。")
|
||
raise
|
||
else:
|
||
logger.warning("跳过兴趣监控任务创建:任务已存在或正在运行。")
|
||
|
||
# --- Added PFChatting Instance Manager ---
|
||
async def _get_or_create_pf_chatting(self, stream_id: str) -> Optional[PFChatting]:
|
||
"""获取现有PFChatting实例或创建新实例。"""
|
||
async with self._pf_chatting_lock:
|
||
if stream_id not in self.pf_chatting_instances:
|
||
self.logger.info(f"为流 {stream_id} 创建新的PFChatting实例")
|
||
# 传递 self (HeartFC_Chat 实例) 进行依赖注入
|
||
instance = PFChatting(stream_id, self)
|
||
# 执行异步初始化
|
||
if not await instance._initialize():
|
||
self.logger.error(f"为流 {stream_id} 初始化PFChatting失败")
|
||
return None
|
||
self.pf_chatting_instances[stream_id] = instance
|
||
return self.pf_chatting_instances[stream_id]
|
||
# --- End Added PFChatting Instance Manager ---
|
||
|
||
async def _interest_monitor_loop(self):
|
||
"""后台任务,定期检查兴趣度变化并触发回复"""
|
||
logger.info("兴趣监控循环开始...")
|
||
while True:
|
||
await asyncio.sleep(INTEREST_MONITOR_INTERVAL_SECONDS)
|
||
try:
|
||
active_stream_ids = list(heartflow.get_all_subheartflows_streams_ids())
|
||
# logger.trace(f"检查 {len(active_stream_ids)} 个活跃流是否足以开启心流对话...") # 调试日志
|
||
|
||
for stream_id in active_stream_ids:
|
||
stream_name = chat_manager.get_stream_name(stream_id) or stream_id # 获取流名称
|
||
sub_hf = heartflow.get_subheartflow(stream_id)
|
||
if not sub_hf:
|
||
logger.warning(f"监控循环: 无法获取活跃流 {stream_name} 的 sub_hf")
|
||
continue
|
||
|
||
should_trigger = False
|
||
try:
|
||
interest_chatting = self.interest_manager.get_interest_chatting(stream_id)
|
||
if interest_chatting:
|
||
should_trigger = interest_chatting.should_evaluate_reply()
|
||
# if should_trigger:
|
||
# logger.info(f"[{stream_name}] 基于兴趣概率决定启动交流模式 (概率: {interest_chatting.current_reply_probability:.4f})。")
|
||
else:
|
||
logger.trace(f"[{stream_name}] 没有找到对应的 InterestChatting 实例,跳过基于兴趣的触发检查。")
|
||
except Exception as e:
|
||
logger.error(f"检查兴趣触发器时出错 流 {stream_name}: {e}")
|
||
logger.error(traceback.format_exc())
|
||
|
||
if should_trigger:
|
||
pf_instance = await self._get_or_create_pf_chatting(stream_id)
|
||
if pf_instance:
|
||
# logger.info(f"[{stream_name}] 触发条件满足, 委托给PFChatting.")
|
||
asyncio.create_task(pf_instance.add_time())
|
||
else:
|
||
logger.error(f"[{stream_name}] 无法获取或创建PFChatting实例。跳过触发。")
|
||
|
||
except asyncio.CancelledError:
|
||
logger.info("兴趣监控循环已取消。")
|
||
break
|
||
except Exception as e:
|
||
logger.error(f"兴趣监控循环错误: {e}")
|
||
logger.error(traceback.format_exc())
|
||
await asyncio.sleep(5) # 发生错误时等待
|
||
|
||
async def _create_thinking_message(self, anchor_message: Optional[MessageRecv]):
|
||
"""创建思考消息 (尝试锚定到 anchor_message)"""
|
||
if not anchor_message or not anchor_message.chat_stream:
|
||
logger.error("无法创建思考消息,缺少有效的锚点消息或聊天流。")
|
||
return None
|
||
|
||
chat = anchor_message.chat_stream
|
||
messageinfo = anchor_message.message_info
|
||
bot_user_info = UserInfo(
|
||
user_id=global_config.BOT_QQ,
|
||
user_nickname=global_config.BOT_NICKNAME,
|
||
platform=messageinfo.platform,
|
||
)
|
||
|
||
thinking_time_point = round(time.time(), 2)
|
||
thinking_id = "mt" + str(thinking_time_point)
|
||
thinking_message = MessageThinking(
|
||
message_id=thinking_id,
|
||
chat_stream=chat,
|
||
bot_user_info=bot_user_info,
|
||
reply=anchor_message, # 回复的是锚点消息
|
||
thinking_start_time=thinking_time_point,
|
||
)
|
||
|
||
MessageManager().add_message(thinking_message)
|
||
return thinking_id
|
||
|
||
async def _send_response_messages(self, anchor_message: Optional[MessageRecv], response_set: List[str], thinking_id) -> Optional[MessageSending]:
|
||
"""发送回复消息 (尝试锚定到 anchor_message)"""
|
||
if not anchor_message or not anchor_message.chat_stream:
|
||
logger.error("无法发送回复,缺少有效的锚点消息或聊天流。")
|
||
return None
|
||
|
||
chat = anchor_message.chat_stream
|
||
container = MessageManager().get_container(chat.stream_id)
|
||
thinking_message = None
|
||
for msg in container.messages:
|
||
if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id:
|
||
thinking_message = msg
|
||
container.messages.remove(msg)
|
||
break
|
||
if not thinking_message:
|
||
stream_name = chat_manager.get_stream_name(chat.stream_id) or chat.stream_id # 获取流名称
|
||
logger.warning(f"[{stream_name}] 未找到对应的思考消息 {thinking_id},可能已超时被移除")
|
||
return None
|
||
|
||
thinking_start_time = thinking_message.thinking_start_time
|
||
message_set = MessageSet(chat, thinking_id)
|
||
mark_head = False
|
||
first_bot_msg = None
|
||
for msg_text in response_set:
|
||
message_segment = Seg(type="text", data=msg_text)
|
||
bot_message = MessageSending(
|
||
message_id=thinking_id, # 使用 thinking_id 作为批次标识
|
||
chat_stream=chat,
|
||
bot_user_info=UserInfo(
|
||
user_id=global_config.BOT_QQ,
|
||
user_nickname=global_config.BOT_NICKNAME,
|
||
platform=anchor_message.message_info.platform,
|
||
),
|
||
sender_info=anchor_message.message_info.user_info, # 发送给锚点消息的用户
|
||
message_segment=message_segment,
|
||
reply=anchor_message, # 回复锚点消息
|
||
is_head=not mark_head,
|
||
is_emoji=False,
|
||
thinking_start_time=thinking_start_time,
|
||
)
|
||
if not mark_head:
|
||
mark_head = True
|
||
first_bot_msg = bot_message
|
||
message_set.add_message(bot_message)
|
||
|
||
if message_set.messages: # 确保有消息才添加
|
||
MessageManager().add_message(message_set)
|
||
return first_bot_msg
|
||
else:
|
||
stream_name = chat_manager.get_stream_name(chat.stream_id) or chat.stream_id # 获取流名称
|
||
logger.warning(f"[{stream_name}] 没有生成有效的回复消息集,无法发送。")
|
||
return None
|
||
|
||
async def _handle_emoji(self, anchor_message: Optional[MessageRecv], response_set, send_emoji=""):
|
||
"""处理表情包 (尝试锚定到 anchor_message)"""
|
||
if not anchor_message or not anchor_message.chat_stream:
|
||
logger.error("无法处理表情包,缺少有效的锚点消息或聊天流。")
|
||
return
|
||
|
||
chat = anchor_message.chat_stream
|
||
if send_emoji:
|
||
emoji_raw = await emoji_manager.get_emoji_for_text(send_emoji)
|
||
else:
|
||
emoji_text_source = "".join(response_set) if response_set else ""
|
||
emoji_raw = await emoji_manager.get_emoji_for_text(emoji_text_source)
|
||
|
||
if emoji_raw:
|
||
emoji_path, description = emoji_raw
|
||
emoji_cq = image_path_to_base64(emoji_path)
|
||
# 使用当前时间戳,因为没有原始消息的时间戳
|
||
thinking_time_point = round(time.time(), 2)
|
||
message_segment = Seg(type="emoji", data=emoji_cq)
|
||
bot_message = MessageSending(
|
||
message_id="me" + str(thinking_time_point), # 使用不同的 ID 前缀?
|
||
chat_stream=chat,
|
||
bot_user_info=UserInfo(
|
||
user_id=global_config.BOT_QQ,
|
||
user_nickname=global_config.BOT_NICKNAME,
|
||
platform=anchor_message.message_info.platform,
|
||
),
|
||
sender_info=anchor_message.message_info.user_info,
|
||
message_segment=message_segment,
|
||
reply=anchor_message, # 回复锚点消息
|
||
is_head=False,
|
||
is_emoji=True,
|
||
)
|
||
MessageManager().add_message(bot_message)
|
||
|
||
async def _update_relationship(self, anchor_message: Optional[MessageRecv], response_set):
|
||
"""更新关系情绪 (尝试基于 anchor_message)"""
|
||
if not anchor_message or not anchor_message.chat_stream:
|
||
logger.error("无法更新关系情绪,缺少有效的锚点消息或聊天流。")
|
||
return
|
||
|
||
# 关系更新依赖于理解回复是针对谁的,以及原始消息的上下文
|
||
# 这里的实现可能需要调整,取决于关系管理器如何工作
|
||
ori_response = ",".join(response_set)
|
||
# 注意:anchor_message.processed_plain_text 是锚点消息的文本,不一定是思考的全部上下文
|
||
stance, emotion = await self.gpt._get_emotion_tags(ori_response, anchor_message.processed_plain_text)
|
||
await relationship_manager.calculate_update_relationship_value(
|
||
chat_stream=anchor_message.chat_stream, # 使用锚点消息的流
|
||
label=emotion,
|
||
stance=stance
|
||
)
|
||
self.mood_manager.update_mood_from_emotion(emotion, global_config.mood_intensity_factor)
|
||
|
||
async def trigger_reply_generation(self, stream_id: str, observed_messages: List[dict]):
|
||
"""根据 SubHeartflow 的触发信号生成回复 (基于观察)"""
|
||
stream_name = chat_manager.get_stream_name(stream_id) or stream_id # <--- 在开始时获取名称
|
||
chat = None
|
||
sub_hf = None
|
||
anchor_message: Optional[MessageRecv] = None # <--- 重命名,用于锚定回复的消息对象
|
||
userinfo: Optional[UserInfo] = None
|
||
messageinfo: Optional[BaseMessageInfo] = None
|
||
|
||
timing_results = {}
|
||
current_mind = None
|
||
response_set = None
|
||
thinking_id = None
|
||
info_catcher = None
|
||
|
||
try:
|
||
# --- 1. 获取核心对象:ChatStream 和 SubHeartflow ---
|
||
try:
|
||
with Timer("获取聊天流和子心流", timing_results):
|
||
chat = chat_manager.get_stream(stream_id)
|
||
if not chat:
|
||
logger.error(f"[{stream_name}] 无法找到聊天流对象,无法生成回复。")
|
||
return
|
||
sub_hf = heartflow.get_subheartflow(stream_id)
|
||
if not sub_hf:
|
||
logger.error(f"[{stream_name}] 无法找到子心流对象,无法生成回复。")
|
||
return
|
||
except Exception as e:
|
||
logger.error(f"[{stream_name}] 获取 ChatStream 或 SubHeartflow 时出错: {e}")
|
||
logger.error(traceback.format_exc())
|
||
return
|
||
|
||
# --- 2. 尝试从 observed_messages 重建最后一条消息作为锚点, 失败则创建占位符 --- #
|
||
try:
|
||
with Timer("获取或创建锚点消息", timing_results):
|
||
reconstruction_failed = False
|
||
if observed_messages:
|
||
try:
|
||
last_msg_dict = observed_messages[-1]
|
||
logger.debug(f"[{stream_name}] Attempting to reconstruct MessageRecv from last observed message.")
|
||
anchor_message = MessageRecv(last_msg_dict, chat_stream=chat)
|
||
if not (anchor_message and anchor_message.message_info and anchor_message.message_info.message_id and anchor_message.message_info.user_info):
|
||
raise ValueError("Reconstructed MessageRecv missing essential info.")
|
||
userinfo = anchor_message.message_info.user_info
|
||
messageinfo = anchor_message.message_info
|
||
logger.debug(f"[{stream_name}] Successfully reconstructed anchor message: ID={messageinfo.message_id}, Sender={userinfo.user_nickname}")
|
||
except Exception as e_reconstruct:
|
||
logger.warning(f"[{stream_name}] Reconstructing MessageRecv from observed message failed: {e_reconstruct}. Will create placeholder.")
|
||
reconstruction_failed = True
|
||
else:
|
||
logger.warning(f"[{stream_name}] observed_messages is empty. Will create placeholder anchor message.")
|
||
reconstruction_failed = True # Treat empty observed_messages as a failure to reconstruct
|
||
|
||
# 如果重建失败或 observed_messages 为空,创建占位符
|
||
if reconstruction_failed:
|
||
placeholder_id = f"mid_{int(time.time() * 1000)}" # 使用毫秒时间戳增加唯一性
|
||
placeholder_user = UserInfo(user_id="system_trigger", user_nickname="系统触发")
|
||
placeholder_msg_info = BaseMessageInfo(
|
||
message_id=placeholder_id,
|
||
platform=chat.platform,
|
||
group_info=chat.group_info,
|
||
user_info=placeholder_user,
|
||
time=time.time()
|
||
# 其他 BaseMessageInfo 可能需要的字段设为默认值或 None
|
||
)
|
||
# 创建 MessageRecv 实例,注意它需要消息字典结构,我们创建一个最小化的
|
||
placeholder_msg_dict = {
|
||
"message_info": placeholder_msg_info.to_dict(),
|
||
"processed_plain_text": "", # 提供空文本
|
||
"raw_message": "",
|
||
"time": placeholder_msg_info.time,
|
||
}
|
||
# 先只用字典创建实例
|
||
anchor_message = MessageRecv(placeholder_msg_dict)
|
||
# 然后调用方法更新 chat_stream
|
||
anchor_message.update_chat_stream(chat)
|
||
userinfo = anchor_message.message_info.user_info
|
||
messageinfo = anchor_message.message_info
|
||
logger.info(f"[{stream_name}] Created placeholder anchor message: ID={messageinfo.message_id}, Sender={userinfo.user_nickname}")
|
||
|
||
except Exception as e:
|
||
logger.error(f"[{stream_name}] 获取或创建锚点消息时出错: {e}")
|
||
logger.error(traceback.format_exc())
|
||
anchor_message = None # 确保出错时 anchor_message 为 None
|
||
|
||
# --- 4. 检查并发思考限制 (使用 anchor_message 简化获取) ---
|
||
try:
|
||
container = MessageManager().get_container(chat.stream_id)
|
||
thinking_count = container.count_thinking_messages()
|
||
max_thinking_messages = getattr(global_config, 'max_concurrent_thinking_messages', 3)
|
||
if thinking_count >= max_thinking_messages:
|
||
logger.warning(f"聊天流 {stream_name} 已有 {thinking_count} 条思考消息,取消回复。")
|
||
return
|
||
except Exception as e:
|
||
logger.error(f"[{stream_name}] 检查并发思考限制时出错: {e}")
|
||
return
|
||
|
||
# --- 5. 创建思考消息 (使用 anchor_message) ---
|
||
try:
|
||
with Timer("创建思考消息", timing_results):
|
||
# 注意:这里传递 anchor_message 给 _create_thinking_message
|
||
thinking_id = await self._create_thinking_message(anchor_message)
|
||
except Exception as e:
|
||
logger.error(f"[{stream_name}] 创建思考消息失败: {e}")
|
||
return
|
||
if not thinking_id:
|
||
logger.error(f"[{stream_name}] 未能成功创建思考消息 ID,无法继续回复流程。")
|
||
return
|
||
|
||
# --- 6. 信息捕捉器 (使用 anchor_message) ---
|
||
logger.trace(f"[{stream_name}] 创建捕捉器,thinking_id:{thinking_id}")
|
||
info_catcher = info_catcher_manager.get_info_catcher(thinking_id)
|
||
info_catcher.catch_decide_to_response(anchor_message)
|
||
|
||
# --- 7. 思考前使用工具 --- #
|
||
get_mid_memory_id = []
|
||
tool_result_info = {}
|
||
send_emoji = ""
|
||
observation_context_text = "" # 从 observation 获取上下文文本
|
||
try:
|
||
# --- 使用传入的 observed_messages 构建上下文文本 --- #
|
||
if observed_messages:
|
||
# 可以选择转换全部消息,或只转换最后几条
|
||
# 这里示例转换全部消息
|
||
context_texts = []
|
||
for msg_dict in observed_messages:
|
||
# 假设 detailed_plain_text 字段包含所需文本
|
||
# 你可能需要更复杂的逻辑来格式化,例如添加发送者和时间
|
||
text = msg_dict.get('detailed_plain_text', '')
|
||
if text:
|
||
context_texts.append(text)
|
||
observation_context_text = "\n".join(context_texts)
|
||
logger.debug(f"[{stream_name}] Context for tools:\n{observation_context_text[-200:]}...") # 打印部分上下文
|
||
else:
|
||
logger.warning(f"[{stream_name}] observed_messages 列表为空,无法为工具提供上下文。")
|
||
|
||
if observation_context_text:
|
||
with Timer("思考前使用工具", timing_results):
|
||
tool_result = await self.tool_user.use_tool(
|
||
message_txt=observation_context_text, # <--- 使用观察上下文
|
||
chat_stream=chat,
|
||
sub_heartflow=sub_hf
|
||
)
|
||
if tool_result.get("used_tools", False):
|
||
if "structured_info" in tool_result:
|
||
tool_result_info = tool_result["structured_info"]
|
||
get_mid_memory_id = []
|
||
for tool_name, tool_data in tool_result_info.items():
|
||
if tool_name == "mid_chat_mem":
|
||
for mid_memory in tool_data:
|
||
get_mid_memory_id.append(mid_memory["content"])
|
||
if tool_name == "send_emoji":
|
||
send_emoji = tool_data[0]["content"]
|
||
except Exception as e:
|
||
logger.error(f"[{stream_name}] 思考前工具调用失败: {e}")
|
||
logger.error(traceback.format_exc())
|
||
|
||
# --- 8. 调用 SubHeartflow 进行思考 (不传递具体消息文本和发送者) ---
|
||
try:
|
||
with Timer("生成内心想法(SubHF)", timing_results):
|
||
# 不再传递 message_txt 和 sender_info, SubHeartflow 应基于其内部观察
|
||
current_mind, past_mind = await sub_hf.do_thinking_before_reply(
|
||
# sender_info=userinfo,
|
||
chat_stream=chat,
|
||
extra_info=tool_result_info,
|
||
obs_id=get_mid_memory_id,
|
||
)
|
||
logger.info(f"[{stream_name}] SubHeartflow 思考完成: {current_mind}")
|
||
except Exception as e:
|
||
logger.error(f"[{stream_name}] SubHeartflow 思考失败: {e}")
|
||
logger.error(traceback.format_exc())
|
||
if info_catcher:
|
||
info_catcher.done_catch()
|
||
return # 思考失败则不继续
|
||
if info_catcher:
|
||
info_catcher.catch_afer_shf_step(timing_results.get("生成内心想法(SubHF)"), past_mind, current_mind)
|
||
|
||
# --- 9. 调用 ResponseGenerator 生成回复 (使用 anchor_message 和 current_mind) ---
|
||
try:
|
||
with Timer("生成最终回复(GPT)", timing_results):
|
||
# response_set = await self.gpt.generate_response(anchor_message, thinking_id, current_mind=current_mind)
|
||
response_set = await self.gpt.generate_response(anchor_message, thinking_id)
|
||
except Exception as e:
|
||
logger.error(f"[{stream_name}] GPT 生成回复失败: {e}")
|
||
logger.error(traceback.format_exc())
|
||
if info_catcher:
|
||
info_catcher.done_catch()
|
||
return
|
||
if info_catcher:
|
||
info_catcher.catch_after_generate_response(timing_results.get("生成最终回复(GPT)"))
|
||
if not response_set:
|
||
logger.info(f"[{stream_name}] 回复生成失败或为空。")
|
||
if info_catcher:
|
||
info_catcher.done_catch()
|
||
return
|
||
|
||
# --- 10. 发送消息 (使用 anchor_message) ---
|
||
first_bot_msg = None
|
||
try:
|
||
with Timer("发送消息", timing_results):
|
||
first_bot_msg = await self._send_response_messages(anchor_message, response_set, thinking_id)
|
||
except Exception as e:
|
||
logger.error(f"[{stream_name}] 发送消息失败: {e}")
|
||
logger.error(traceback.format_exc())
|
||
if info_catcher:
|
||
info_catcher.catch_after_response(timing_results.get("发送消息"), response_set, first_bot_msg)
|
||
info_catcher.done_catch() # 完成捕捉
|
||
|
||
# --- 11. 处理表情包 (使用 anchor_message) ---
|
||
try:
|
||
with Timer("处理表情包", timing_results):
|
||
if send_emoji:
|
||
logger.info(f"[{stream_name}] 决定发送表情包 {send_emoji}")
|
||
await self._handle_emoji(anchor_message, response_set, send_emoji)
|
||
except Exception as e:
|
||
logger.error(f"[{stream_name}] 处理表情包失败: {e}")
|
||
logger.error(traceback.format_exc())
|
||
|
||
# --- 12. 记录性能日志 --- #
|
||
timing_str = " | ".join([f"{step}: {duration:.2f}秒" for step, duration in timing_results.items()])
|
||
response_msg = " ".join(response_set) if response_set else "无回复"
|
||
logger.info(f"[{stream_name}] 回复任务完成 (Observation Triggered): | 思维消息: {response_msg[:30]}... | 性能计时: {timing_str}")
|
||
|
||
# --- 13. 更新关系情绪 (使用 anchor_message) ---
|
||
if first_bot_msg: # 仅在成功发送消息后
|
||
try:
|
||
with Timer("更新关系情绪", timing_results):
|
||
await self._update_relationship(anchor_message, response_set)
|
||
except Exception as e:
|
||
logger.error(f"[{stream_name}] 更新关系情绪失败: {e}")
|
||
logger.error(traceback.format_exc())
|
||
|
||
except Exception as e:
|
||
logger.error(f"回复生成任务失败 (trigger_reply_generation V4 - Observation Triggered): {e}")
|
||
logger.error(traceback.format_exc())
|
||
|
||
finally:
|
||
# 可以在这里添加清理逻辑,如果有的话
|
||
pass
|
||
# --- 结束重构 ---
|
||
|
||
# _create_thinking_message, _send_response_messages, _handle_emoji, _update_relationship
|
||
# 这几个辅助方法目前仍然依赖 MessageRecv 对象。
|
||
# 如果无法可靠地从 Observation 获取并重建最后一条消息的 MessageRecv,
|
||
# 或者希望回复不锚定具体消息,那么这些方法也需要进一步重构。
|