MaiBot/src/dream/dream_generator.py

243 lines
11 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import random
from typing import List, Optional
from src.common.logger import get_logger
from src.config.config import global_config, model_config
from src.chat.utils.prompt_builder import Prompt
from src.llm_models.payload_content.message import RoleType, Message
from src.llm_models.utils_model import LLMRequest
from src.chat.message_receive.chat_stream import get_chat_manager
from src.plugin_system.apis import send_api
logger = get_logger("dream_generator")
# 初始化 utils 模型用于生成梦境总结
_dream_summary_model: Optional[LLMRequest] = None
# 梦境风格列表21种
DREAM_STYLES = [
"保持诗意和想象力,自由编写",
"诗意朦胧,如薄雾笼罩的清晨",
"奇幻冒险,充满未知与探索",
"温暖怀旧,带着时光的痕迹",
"神秘悬疑,暗藏深意",
"浪漫唯美,如诗如画",
"科幻未来,科技与想象交织",
"自然清新,如山林间的微风",
"深沉哲思,引人深思",
"轻松幽默,充满趣味",
"悲伤忧郁,带着淡淡哀愁",
"激昂热烈,充满活力",
"宁静平和,如湖面般平静",
"荒诞离奇,打破常规",
"细腻温柔,如春风拂面",
"壮阔宏大,气势磅礴",
"简约纯粹,返璞归真",
"复杂多变,层次丰富",
"梦幻迷离,虚实难辨",
"现实写意,贴近生活",
"抽象概念,超越具象",
]
def get_random_dream_styles(count: int = 2) -> List[str]:
"""从梦境风格列表中随机选择指定数量的风格"""
return random.sample(DREAM_STYLES, min(count, len(DREAM_STYLES)))
def init_dream_summary_prompt() -> None:
"""初始化梦境总结的提示词"""
Prompt(
"""
你刚刚完成了一次对聊天记录的记忆整理工作。以下是整理过程的摘要:
整理过程:
{conversation_text}
请将这次整理涉及的相关信息改写为一个富有诗意和想象力的"梦境",请你仅使用具体的记忆的内容,而不是整理过程编写。
要求:
1. 使用第一人称视角
2. 叙述直白,不要复杂修辞,口语化
3. 长度控制在200-800字
4. 用中文输出
梦境风格:
{dream_styles}
请直接输出梦境内容,不要添加其他说明:
""",
name="dream_summary_prompt",
)
async def generate_dream_summary(
chat_id: str,
conversation_messages: List[Message],
total_iterations: int,
time_cost: float,
) -> None:
"""生成梦境总结,输出到日志,并根据配置可选地推送给指定用户"""
try:
import json
from src.chat.utils.prompt_builder import global_prompt_manager
# 第一步:建立工具调用结果映射 (call_id -> result)
tool_results_map: dict[str, str] = {}
for msg in conversation_messages:
if msg.role == RoleType.Tool and msg.tool_call_id:
content = ""
if msg.content:
if isinstance(msg.content, list) and msg.content:
content = msg.content[0].text if hasattr(msg.content[0], "text") else str(msg.content[0])
else:
content = str(msg.content)
tool_results_map[msg.tool_call_id] = content
# 第二步:详细记录所有工具调用操作和结果到日志
tool_call_count = 0
logger.info(f"[dream][工具调用详情] 开始记录 chat_id={chat_id} 的所有工具调用操作:")
for msg in conversation_messages:
if msg.role == RoleType.Assistant and msg.tool_calls:
tool_call_count += 1
# 提取思考内容
thought_content = ""
if msg.content:
if isinstance(msg.content, list) and msg.content:
thought_content = (
msg.content[0].text if hasattr(msg.content[0], "text") else str(msg.content[0])
)
else:
thought_content = str(msg.content)
logger.info(f"[dream][工具调用详情] === 第 {tool_call_count} 组工具调用 ===")
if thought_content:
logger.info(
f"[dream][工具调用详情] 思考内容:{thought_content[:500]}{'...' if len(thought_content) > 500 else ''}"
)
# 记录每个工具调用的详细信息
for idx, tool_call in enumerate(msg.tool_calls, 1):
tool_name = tool_call.func_name
tool_args = tool_call.args or {}
tool_call_id = tool_call.call_id
tool_result = tool_results_map.get(tool_call_id, "未找到执行结果")
# 格式化参数
try:
args_str = json.dumps(tool_args, ensure_ascii=False, indent=2) if tool_args else "无参数"
except Exception:
args_str = str(tool_args)
logger.info(f"[dream][工具调用详情] --- 工具 {idx}: {tool_name} ---")
logger.info(f"[dream][工具调用详情] 调用参数:\n{args_str}")
logger.info(f"[dream][工具调用详情] 执行结果:\n{tool_result}")
logger.info(f"[dream][工具调用详情] {'-' * 60}")
logger.info(f"[dream][工具调用详情] 共记录了 {tool_call_count} 组工具调用操作")
# 第三步:构建对话历史摘要(用于生成梦境)
conversation_summary = []
for msg in conversation_messages:
role = msg.role.value if hasattr(msg.role, "value") else str(msg.role)
content = ""
if msg.content:
content = msg.content[0].text if isinstance(msg.content, list) and msg.content else str(msg.content)
if role == "user" and "轮次信息" in content:
# 跳过轮次信息消息
continue
if role == "assistant":
# 只保留思考内容,简化工具调用信息
if content:
# 截取前500字符避免过长
content_preview = content[:500] + ("..." if len(content) > 500 else "")
conversation_summary.append(f"[{role}] {content_preview}")
elif role == "tool":
# 工具结果,只保留关键信息
if content:
# 截取前300字符
content_preview = content[:300] + ("..." if len(content) > 300 else "")
conversation_summary.append(f"[工具执行] {content_preview}")
conversation_text = "\n".join(conversation_summary[-20:]) # 只保留最后20条消息
# 随机选择2个梦境风格
selected_styles = get_random_dream_styles(2)
dream_styles_text = "\n".join([f"{i + 1}. {style}" for i, style in enumerate(selected_styles)])
# 使用 Prompt 管理器格式化梦境生成 prompt
dream_prompt = await global_prompt_manager.format_prompt(
"dream_summary_prompt",
chat_id=chat_id,
total_iterations=total_iterations,
time_cost=time_cost,
conversation_text=conversation_text,
dream_styles=dream_styles_text,
)
# 调用 utils 模型生成梦境
summary_model = LLMRequest(
model_set=model_config.model_task_config.replyer,
request_type="dream.summary",
)
dream_content, (reasoning, model_name, _) = await summary_model.generate_response_async(
dream_prompt,
temperature=0.8,
)
if dream_content:
logger.info(f"[dream][梦境总结] 对 chat_id={chat_id} 的整理过程梦境:\n{dream_content}")
# 第五步:根据配置决定是否将梦境发送给指定用户
try:
dream_send_raw = getattr(global_config.dream, "dream_send", "") or ""
dream_send = dream_send_raw.strip()
if dream_send:
parts = dream_send.split(":")
if len(parts) != 2:
logger.warning(
f"[dream][梦境总结] dream_send 配置格式不正确,应为 'platform:user_id',当前值: {dream_send_raw!r}"
)
else:
platform, user_id = parts[0].strip(), parts[1].strip()
if not platform or not user_id:
logger.warning(
f"[dream][梦境总结] dream_send 平台或用户ID为空当前值: {dream_send_raw!r}"
)
else:
# 默认为私聊会话
stream_id = get_chat_manager().get_stream_id(
platform=platform,
id=str(user_id),
is_group=False,
)
if not stream_id:
logger.error(
f"[dream][梦境总结] 无法根据 dream_send 找到有效的聊天流,"
f"platform={platform!r}, user_id={user_id!r}"
)
else:
dream_visible = global_config.dream.dream_visible
ok = await send_api.text_to_stream(
dream_content,
stream_id=stream_id,
typing=False,
storage_message=dream_visible,
)
if ok:
logger.info(
f"[dream][梦境总结] 已将梦境结果发送给配置的目标用户: {platform}:{user_id}"
)
else:
logger.error(
f"[dream][梦境总结] 向 {platform}:{user_id} 发送梦境结果失败"
)
except Exception as send_exc:
logger.error(f"[dream][梦境总结] 发送梦境结果到配置用户时出错: {send_exc}", exc_info=True)
else:
logger.warning("[dream][梦境总结] 未能生成梦境总结")
except Exception as e:
logger.error(f"[dream][梦境总结] 生成梦境总结失败: {e}", exc_info=True)
init_dream_summary_prompt()