mirror of https://github.com/Mai-with-u/MaiBot.git
1031 lines
41 KiB
Python
1031 lines
41 KiB
Python
"""
|
||
聊天内容概括器
|
||
用于累积、打包和压缩聊天记录
|
||
"""
|
||
|
||
import asyncio
|
||
import json
|
||
import time
|
||
import re
|
||
import difflib
|
||
from pathlib import Path
|
||
from typing import Any, Dict, List, Optional, Set
|
||
from dataclasses import dataclass, field
|
||
from json_repair import repair_json
|
||
|
||
from src.common.logger import get_logger
|
||
from src.common.data_models.database_data_model import DatabaseMessages
|
||
from src.config.config import global_config, model_config
|
||
from src.llm_models.utils_model import LLMRequest
|
||
from src.plugin_system.apis import message_api
|
||
from src.chat.utils.chat_message_builder import build_readable_messages
|
||
from src.person_info.person_info import Person
|
||
from src.chat.message_receive.chat_stream import get_chat_manager
|
||
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
|
||
|
||
logger = get_logger("chat_history_summarizer")
|
||
|
||
HIPPO_CACHE_DIR = Path(__file__).resolve().parents[2] / "data" / "hippo_memorizer"
|
||
|
||
|
||
def init_prompt():
|
||
"""初始化提示词模板"""
|
||
|
||
topic_analysis_prompt = """【历史话题标题列表】(仅标题,不含具体内容):
|
||
{history_topics_block}
|
||
【历史话题标题列表结束】
|
||
|
||
【本次聊天记录】(每条消息前有编号,用于后续引用):
|
||
{messages_block}
|
||
【本次聊天记录结束】
|
||
|
||
请完成以下任务:
|
||
**识别话题**
|
||
1. 识别【本次聊天记录】中正在进行的一个或多个话题;
|
||
2. 【本次聊天记录】的中的消息可能与历史话题有关,也可能毫无关联。
|
||
2. 判断【历史话题标题列表】中的话题是否在【本次聊天记录】中出现,如果出现,则直接使用该历史话题标题字符串;
|
||
|
||
**选取消息**
|
||
1. 对于每个话题(新话题或历史话题),从上述带编号的消息中选出与该话题强相关的消息编号列表;
|
||
2. 每个话题用一句话清晰地描述正在发生的事件,必须包含时间(大致即可)、人物、主要事件和主题,保证精准且有区分度;
|
||
|
||
请先输出一段简短思考,说明有什么话题,哪些是不包含在历史话题中的,哪些是包含在历史话题中的,并说明为什么;
|
||
然后严格以 JSON 格式输出【本次聊天记录】中涉及的话题,格式如下:
|
||
[
|
||
{{
|
||
"topic": "话题",
|
||
"message_indices": [1, 2, 5]
|
||
}},
|
||
...
|
||
]
|
||
"""
|
||
Prompt(topic_analysis_prompt, "hippo_topic_analysis_prompt")
|
||
|
||
topic_summary_prompt = """
|
||
请基于以下话题,对聊天记录片段进行概括,提取以下信息:
|
||
|
||
**话题**:{topic}
|
||
|
||
**要求**:
|
||
1. 关键词:提取与话题相关的关键词,用列表形式返回(3-10个关键词)
|
||
2. 概括:对这段话的平文本概括(50-200字),要求:
|
||
- 仔细地转述发生的事件和聊天内容;
|
||
- 可以适当摘取聊天记录中的原文;
|
||
- 重点突出事件的发展过程和结果;
|
||
- 围绕话题这个中心进行概括。
|
||
3. 关键信息:提取话题中的关键信息点,用列表形式返回(3-8个关键信息点),每个关键信息点应该简洁明了。
|
||
|
||
请以JSON格式返回,格式如下:
|
||
{{
|
||
"keywords": ["关键词1", "关键词2", ...],
|
||
"summary": "概括内容",
|
||
"key_point": ["关键信息1", "关键信息2", ...]
|
||
}}
|
||
|
||
聊天记录:
|
||
{original_text}
|
||
|
||
请直接返回JSON,不要包含其他内容。
|
||
"""
|
||
Prompt(topic_summary_prompt, "hippo_topic_summary_prompt")
|
||
|
||
|
||
@dataclass
|
||
class MessageBatch:
|
||
"""消息批次(用于触发话题检查的原始消息累积)"""
|
||
|
||
messages: List[DatabaseMessages]
|
||
start_time: float
|
||
end_time: float
|
||
|
||
|
||
@dataclass
|
||
class TopicCacheItem:
|
||
"""
|
||
话题缓存项
|
||
|
||
Attributes:
|
||
topic: 话题标题(一句话描述时间、人物、事件和主题)
|
||
messages: 与该话题相关的消息字符串列表(已经通过 build 函数转成可读文本)
|
||
participants: 涉及到的发言人昵称集合
|
||
no_update_checks: 连续多少次“检查”没有新增内容
|
||
"""
|
||
|
||
topic: str
|
||
messages: List[str] = field(default_factory=list)
|
||
participants: Set[str] = field(default_factory=set)
|
||
no_update_checks: int = 0
|
||
|
||
|
||
class ChatHistorySummarizer:
|
||
"""聊天内容概括器"""
|
||
|
||
def __init__(self, chat_id: str, check_interval: int = 60):
|
||
"""
|
||
初始化聊天内容概括器
|
||
|
||
Args:
|
||
chat_id: 聊天ID
|
||
check_interval: 定期检查间隔(秒),默认60秒
|
||
"""
|
||
self.chat_id = chat_id
|
||
self._chat_display_name = self._get_chat_display_name()
|
||
self.log_prefix = f"[{self._chat_display_name}]"
|
||
|
||
# 记录时间点,用于计算新消息
|
||
self.last_check_time = time.time()
|
||
|
||
# 记录上一次话题检查的时间,用于判断是否需要触发检查
|
||
self.last_topic_check_time = time.time()
|
||
|
||
# 当前累积的消息批次
|
||
self.current_batch: Optional[MessageBatch] = None
|
||
|
||
# 话题缓存:topic_str -> TopicCacheItem
|
||
# 在内存中维护,并通过本地文件实时持久化
|
||
self.topic_cache: Dict[str, TopicCacheItem] = {}
|
||
self._safe_chat_id = self._sanitize_chat_id(self.chat_id)
|
||
self._topic_cache_file = HIPPO_CACHE_DIR / f"{self._safe_chat_id}.json"
|
||
# 注意:批次加载需要异步查询消息,所以在 start() 中调用
|
||
|
||
# LLM请求器,用于压缩聊天内容
|
||
self.summarizer_llm = LLMRequest(
|
||
model_set=model_config.model_task_config.utils, request_type="chat_history_summarizer"
|
||
)
|
||
|
||
# 后台循环相关
|
||
self.check_interval = check_interval # 检查间隔(秒)
|
||
self._periodic_task: Optional[asyncio.Task] = None
|
||
self._running = False
|
||
|
||
def _get_chat_display_name(self) -> str:
|
||
"""获取聊天显示名称"""
|
||
try:
|
||
chat_name = get_chat_manager().get_stream_name(self.chat_id)
|
||
if chat_name:
|
||
return chat_name
|
||
# 如果获取失败,使用简化的chat_id显示
|
||
if len(self.chat_id) > 20:
|
||
return f"{self.chat_id[:8]}..."
|
||
return self.chat_id
|
||
except Exception:
|
||
# 如果获取失败,使用简化的chat_id显示
|
||
if len(self.chat_id) > 20:
|
||
return f"{self.chat_id[:8]}..."
|
||
return self.chat_id
|
||
|
||
def _sanitize_chat_id(self, chat_id: str) -> str:
|
||
"""用于生成可作为文件名的 chat_id"""
|
||
return re.sub(r"[^a-zA-Z0-9_.-]", "_", chat_id)
|
||
|
||
def _load_topic_cache_from_disk(self):
|
||
"""在启动时加载本地话题缓存(同步部分),支持重启后继续"""
|
||
try:
|
||
if not self._topic_cache_file.exists():
|
||
return
|
||
|
||
with self._topic_cache_file.open("r", encoding="utf-8") as f:
|
||
data = json.load(f)
|
||
|
||
self.last_topic_check_time = data.get("last_topic_check_time", self.last_topic_check_time)
|
||
topics_data = data.get("topics", {})
|
||
loaded_count = 0
|
||
for topic, payload in topics_data.items():
|
||
self.topic_cache[topic] = TopicCacheItem(
|
||
topic=topic,
|
||
messages=payload.get("messages", []),
|
||
participants=set(payload.get("participants", [])),
|
||
no_update_checks=payload.get("no_update_checks", 0),
|
||
)
|
||
loaded_count += 1
|
||
|
||
if loaded_count:
|
||
logger.info(f"{self.log_prefix} 已加载 {loaded_count} 个话题缓存,继续追踪")
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 加载话题缓存失败: {e}")
|
||
|
||
async def _load_batch_from_disk(self):
|
||
"""在启动时加载聊天批次,支持重启后继续"""
|
||
try:
|
||
if not self._topic_cache_file.exists():
|
||
return
|
||
|
||
with self._topic_cache_file.open("r", encoding="utf-8") as f:
|
||
data = json.load(f)
|
||
|
||
batch_data = data.get("current_batch")
|
||
if not batch_data:
|
||
return
|
||
|
||
start_time = batch_data.get("start_time")
|
||
end_time = batch_data.get("end_time")
|
||
if not start_time or not end_time:
|
||
return
|
||
|
||
# 根据时间范围重新查询消息
|
||
messages = message_api.get_messages_by_time_in_chat(
|
||
chat_id=self.chat_id,
|
||
start_time=start_time,
|
||
end_time=end_time,
|
||
limit=0,
|
||
limit_mode="latest",
|
||
filter_mai=False,
|
||
filter_command=False,
|
||
)
|
||
|
||
if messages:
|
||
self.current_batch = MessageBatch(
|
||
messages=messages,
|
||
start_time=start_time,
|
||
end_time=end_time,
|
||
)
|
||
logger.info(f"{self.log_prefix} 已恢复聊天批次,包含 {len(messages)} 条消息")
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 加载聊天批次失败: {e}")
|
||
|
||
def _persist_topic_cache(self):
|
||
"""实时持久化话题缓存和聊天批次,避免重启后丢失"""
|
||
try:
|
||
# 如果既没有话题缓存也没有批次,删除缓存文件
|
||
if not self.topic_cache and not self.current_batch:
|
||
if self._topic_cache_file.exists():
|
||
self._topic_cache_file.unlink()
|
||
return
|
||
|
||
HIPPO_CACHE_DIR.mkdir(parents=True, exist_ok=True)
|
||
data = {
|
||
"chat_id": self.chat_id,
|
||
"last_topic_check_time": self.last_topic_check_time,
|
||
"topics": {
|
||
topic: {
|
||
"messages": item.messages,
|
||
"participants": list(item.participants),
|
||
"no_update_checks": item.no_update_checks,
|
||
}
|
||
for topic, item in self.topic_cache.items()
|
||
},
|
||
}
|
||
|
||
# 保存当前批次的时间范围(如果有)
|
||
if self.current_batch:
|
||
data["current_batch"] = {
|
||
"start_time": self.current_batch.start_time,
|
||
"end_time": self.current_batch.end_time,
|
||
}
|
||
|
||
with self._topic_cache_file.open("w", encoding="utf-8") as f:
|
||
json.dump(data, f, ensure_ascii=False, indent=2)
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 持久化话题缓存失败: {e}")
|
||
|
||
async def process(self, current_time: Optional[float] = None):
|
||
"""
|
||
处理聊天内容概括
|
||
|
||
Args:
|
||
current_time: 当前时间戳,如果为None则使用time.time()
|
||
"""
|
||
if current_time is None:
|
||
current_time = time.time()
|
||
|
||
try:
|
||
# 获取从上次检查时间到当前时间的新消息
|
||
new_messages = message_api.get_messages_by_time_in_chat(
|
||
chat_id=self.chat_id,
|
||
start_time=self.last_check_time,
|
||
end_time=current_time,
|
||
limit=0,
|
||
limit_mode="latest",
|
||
filter_mai=False, # 不过滤bot消息,因为需要检查bot是否发言
|
||
filter_command=False,
|
||
)
|
||
|
||
if not new_messages:
|
||
# 没有新消息,检查是否需要进行“话题检查”
|
||
if self.current_batch and self.current_batch.messages:
|
||
await self._check_and_run_topic_check(current_time)
|
||
self.last_check_time = current_time
|
||
return
|
||
|
||
logger.debug(
|
||
f"{self.log_prefix} 开始处理聊天概括,时间窗口: {self.last_check_time:.2f} -> {current_time:.2f}"
|
||
)
|
||
|
||
# 有新消息,更新最后检查时间
|
||
self.last_check_time = current_time
|
||
|
||
# 如果有当前批次,添加新消息
|
||
if self.current_batch:
|
||
before_count = len(self.current_batch.messages)
|
||
self.current_batch.messages.extend(new_messages)
|
||
self.current_batch.end_time = current_time
|
||
logger.info(
|
||
f"{self.log_prefix} 更新聊天检查批次: {before_count} -> {len(self.current_batch.messages)} 条消息"
|
||
)
|
||
# 更新批次后持久化
|
||
self._persist_topic_cache()
|
||
else:
|
||
# 创建新批次
|
||
self.current_batch = MessageBatch(
|
||
messages=new_messages,
|
||
start_time=new_messages[0].time if new_messages else current_time,
|
||
end_time=current_time,
|
||
)
|
||
logger.debug(f"{self.log_prefix} 新建聊天检查批次: {len(new_messages)} 条消息")
|
||
# 创建批次后持久化
|
||
self._persist_topic_cache()
|
||
|
||
# 检查是否需要触发“话题检查”
|
||
await self._check_and_run_topic_check(current_time)
|
||
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 处理聊天内容概括时出错: {e}")
|
||
import traceback
|
||
|
||
traceback.print_exc()
|
||
|
||
async def _check_and_run_topic_check(self, current_time: float):
|
||
"""
|
||
检查是否需要进行一次“话题检查”
|
||
|
||
触发条件:
|
||
- 当前批次消息数 >= 100,或者
|
||
- 距离上一次检查的时间 > 3600 秒(1小时)
|
||
"""
|
||
if not self.current_batch or not self.current_batch.messages:
|
||
return
|
||
|
||
messages = self.current_batch.messages
|
||
message_count = len(messages)
|
||
time_since_last_check = current_time - self.last_topic_check_time
|
||
|
||
# 格式化时间差显示
|
||
if time_since_last_check < 60:
|
||
time_str = f"{time_since_last_check:.1f}秒"
|
||
elif time_since_last_check < 3600:
|
||
time_str = f"{time_since_last_check / 60:.1f}分钟"
|
||
else:
|
||
time_str = f"{time_since_last_check / 3600:.1f}小时"
|
||
|
||
logger.debug(f"{self.log_prefix} 批次状态检查 | 消息数: {message_count} | 距上次检查: {time_str}")
|
||
|
||
# 检查“话题检查”触发条件
|
||
should_check = False
|
||
|
||
# 条件1: 消息数量 >= 100,触发一次检查
|
||
if message_count >= 80:
|
||
should_check = True
|
||
logger.info(f"{self.log_prefix} 触发检查条件: 消息数量达到 {message_count} 条(阈值: 100条)")
|
||
|
||
# 条件2: 距离上一次检查 > 3600 * 8 秒(8小时)且消息数量 >= 20 条,触发一次检查
|
||
elif time_since_last_check > 3600 * 8 and message_count >= 20:
|
||
should_check = True
|
||
logger.info(f"{self.log_prefix} 触发检查条件: 距上次检查 {time_str}(阈值: 8小时)且消息数量达到 {message_count} 条(阈值: 20条)")
|
||
|
||
if should_check:
|
||
await self._run_topic_check_and_update_cache(messages)
|
||
# 本批次已经被处理为话题信息,可以清空
|
||
self.current_batch = None
|
||
# 更新上一次检查时间,并持久化
|
||
self.last_topic_check_time = current_time
|
||
self._persist_topic_cache()
|
||
|
||
async def _run_topic_check_and_update_cache(self, messages: List[DatabaseMessages]):
|
||
"""
|
||
执行一次“话题检查”:
|
||
1. 首先确认这段消息里是否有 Bot 发言,没有则直接丢弃本次批次;
|
||
2. 将消息编号并转成字符串,构造 LLM Prompt;
|
||
3. 把历史话题标题列表放入 Prompt,要求 LLM:
|
||
- 识别当前聊天中的话题(1 个或多个);
|
||
- 为每个话题选出相关消息编号;
|
||
- 若话题属于历史话题,则沿用原话题标题;
|
||
4. LLM 返回 JSON:多个 {topic, message_indices};
|
||
5. 更新本地话题缓存,并根据规则触发“话题打包存储”。
|
||
"""
|
||
if not messages:
|
||
return
|
||
|
||
start_time = messages[0].time
|
||
end_time = messages[-1].time
|
||
|
||
logger.info(
|
||
f"{self.log_prefix} 开始话题检查 | 消息数: {len(messages)} | 时间范围: {start_time:.2f} - {end_time:.2f}"
|
||
)
|
||
|
||
# 1. 检查当前批次内是否有 bot 发言(只检查当前批次,不往前推)
|
||
# 原因:我们要记录的是 bot 参与过的对话片段,如果当前批次内 bot 没有发言,
|
||
# 说明 bot 没有参与这段对话,不应该记录
|
||
bot_user_id = str(global_config.bot.qq_account)
|
||
has_bot_message = False
|
||
|
||
for msg in messages:
|
||
if msg.user_info.user_id == bot_user_id:
|
||
has_bot_message = True
|
||
break
|
||
|
||
if not has_bot_message:
|
||
logger.info(
|
||
f"{self.log_prefix} 当前批次内无 Bot 发言,丢弃本次检查 | 时间范围: {start_time:.2f} - {end_time:.2f}"
|
||
)
|
||
return
|
||
|
||
# 2. 构造编号后的消息字符串和参与者信息
|
||
numbered_lines, index_to_msg_str, index_to_msg_text, index_to_participants = (
|
||
self._build_numbered_messages_for_llm(messages)
|
||
)
|
||
|
||
# 3. 调用 LLM 识别话题,并得到 topic -> indices(失败时最多重试 3 次)
|
||
existing_topics = list(self.topic_cache.keys())
|
||
max_retries = 3
|
||
attempt = 0
|
||
success = False
|
||
topic_to_indices: Dict[str, List[int]] = {}
|
||
|
||
while attempt < max_retries:
|
||
attempt += 1
|
||
success, topic_to_indices = await self._analyze_topics_with_llm(
|
||
numbered_lines=numbered_lines,
|
||
existing_topics=existing_topics,
|
||
)
|
||
|
||
if success and topic_to_indices:
|
||
if attempt > 1:
|
||
logger.info(
|
||
f"{self.log_prefix} 话题识别在第 {attempt} 次重试后成功 | 话题数: {len(topic_to_indices)}"
|
||
)
|
||
break
|
||
|
||
logger.warning(
|
||
f"{self.log_prefix} 话题识别失败或无有效话题,第 {attempt} 次尝试失败"
|
||
+ ("" if attempt >= max_retries else ",准备重试")
|
||
)
|
||
|
||
if not success or not topic_to_indices:
|
||
logger.error(f"{self.log_prefix} 话题识别连续 {max_retries} 次失败或始终无有效话题,本次检查放弃")
|
||
# 即使识别失败,也认为是一次"检查",但不更新 no_update_checks(保持原状)
|
||
return
|
||
|
||
# 3.5. 检查新话题是否与历史话题相似(相似度>=90%则使用历史标题)
|
||
topic_mapping = self._build_topic_mapping(topic_to_indices, similarity_threshold=0.9)
|
||
|
||
# 应用话题映射:将相似的新话题标题替换为历史话题标题
|
||
if topic_mapping:
|
||
new_topic_to_indices: Dict[str, List[int]] = {}
|
||
for new_topic, indices in topic_to_indices.items():
|
||
# 如果这个新话题需要映射到历史话题
|
||
if new_topic in topic_mapping:
|
||
historical_topic = topic_mapping[new_topic]
|
||
# 如果历史话题已经存在,合并消息索引
|
||
if historical_topic in new_topic_to_indices:
|
||
# 合并索引并去重
|
||
combined_indices = list(set(new_topic_to_indices[historical_topic] + indices))
|
||
new_topic_to_indices[historical_topic] = combined_indices
|
||
else:
|
||
new_topic_to_indices[historical_topic] = indices
|
||
else:
|
||
# 不需要映射,保持原样
|
||
new_topic_to_indices[new_topic] = indices
|
||
topic_to_indices = new_topic_to_indices
|
||
|
||
# 4. 统计哪些话题在本次检查中有新增内容
|
||
updated_topics: Set[str] = set()
|
||
|
||
for topic, indices in topic_to_indices.items():
|
||
if not indices:
|
||
continue
|
||
|
||
item = self.topic_cache.get(topic)
|
||
if not item:
|
||
# 新话题
|
||
item = TopicCacheItem(topic=topic)
|
||
self.topic_cache[topic] = item
|
||
|
||
# 收集属于该话题的消息文本(不带编号)
|
||
topic_msg_texts: List[str] = []
|
||
new_participants: Set[str] = set()
|
||
for idx in indices:
|
||
msg_text = index_to_msg_text.get(idx)
|
||
if not msg_text:
|
||
continue
|
||
topic_msg_texts.append(msg_text)
|
||
new_participants.update(index_to_participants.get(idx, set()))
|
||
|
||
if not topic_msg_texts:
|
||
continue
|
||
|
||
# 将本次检查中属于该话题的所有消息合并为一个字符串(不带编号)
|
||
merged_text = "\n".join(topic_msg_texts)
|
||
item.messages.append(merged_text)
|
||
item.participants.update(new_participants)
|
||
# 本次检查中该话题有更新,重置计数
|
||
item.no_update_checks = 0
|
||
updated_topics.add(topic)
|
||
|
||
# 5. 对于本次没有更新的历史话题,no_update_checks + 1
|
||
for topic, item in list(self.topic_cache.items()):
|
||
if topic not in updated_topics:
|
||
item.no_update_checks += 1
|
||
|
||
# 6. 检查是否有话题需要打包存储
|
||
topics_to_finalize: List[str] = []
|
||
for topic, item in self.topic_cache.items():
|
||
if item.no_update_checks >= 3:
|
||
logger.info(f"{self.log_prefix} 话题[{topic}] 连续 3 次检查无新增内容,触发打包存储")
|
||
topics_to_finalize.append(topic)
|
||
continue
|
||
if len(item.messages) > 5:
|
||
logger.info(f"{self.log_prefix} 话题[{topic}] 消息条数超过 4,触发打包存储")
|
||
topics_to_finalize.append(topic)
|
||
|
||
for topic in topics_to_finalize:
|
||
item = self.topic_cache.get(topic)
|
||
if not item:
|
||
continue
|
||
try:
|
||
await self._finalize_and_store_topic(
|
||
topic=topic,
|
||
item=item,
|
||
# 这里的时间范围尽量覆盖最近一次检查的区间
|
||
start_time=start_time,
|
||
end_time=end_time,
|
||
)
|
||
finally:
|
||
# 无论成功与否,都从缓存中删除,避免重复
|
||
self.topic_cache.pop(topic, None)
|
||
|
||
def _find_most_similar_topic(
|
||
self, new_topic: str, existing_topics: List[str], similarity_threshold: float = 0.9
|
||
) -> Optional[tuple[str, float]]:
|
||
"""
|
||
查找与给定新话题最相似的历史话题
|
||
|
||
Args:
|
||
new_topic: 新话题标题
|
||
existing_topics: 历史话题标题列表
|
||
similarity_threshold: 相似度阈值,默认0.9(90%)
|
||
|
||
Returns:
|
||
Optional[tuple[str, float]]: 如果找到相似度>=阈值的历史话题,返回(历史话题标题, 相似度),
|
||
否则返回None
|
||
"""
|
||
if not existing_topics:
|
||
return None
|
||
|
||
best_match = None
|
||
best_similarity = 0.0
|
||
|
||
for existing_topic in existing_topics:
|
||
similarity = difflib.SequenceMatcher(None, new_topic, existing_topic).ratio()
|
||
if similarity > best_similarity:
|
||
best_similarity = similarity
|
||
best_match = existing_topic
|
||
|
||
# 如果相似度达到阈值,返回匹配结果
|
||
if best_match and best_similarity >= similarity_threshold:
|
||
return (best_match, best_similarity)
|
||
|
||
return None
|
||
|
||
def _build_topic_mapping(
|
||
self, topic_to_indices: Dict[str, List[int]], similarity_threshold: float = 0.9
|
||
) -> Dict[str, str]:
|
||
"""
|
||
构建新话题到历史话题的映射(如果相似度>=阈值)
|
||
|
||
Args:
|
||
topic_to_indices: 新话题到消息索引的映射
|
||
similarity_threshold: 相似度阈值,默认0.9(90%)
|
||
|
||
Returns:
|
||
Dict[str, str]: 新话题 -> 历史话题的映射字典
|
||
"""
|
||
existing_topics_list = list(self.topic_cache.keys())
|
||
topic_mapping: Dict[str, str] = {}
|
||
|
||
for new_topic in topic_to_indices.keys():
|
||
# 如果新话题已经在历史话题中,不需要检查
|
||
if new_topic in existing_topics_list:
|
||
continue
|
||
|
||
# 查找最相似的历史话题
|
||
result = self._find_most_similar_topic(new_topic, existing_topics_list, similarity_threshold)
|
||
if result:
|
||
historical_topic, similarity = result
|
||
topic_mapping[new_topic] = historical_topic
|
||
logger.info(
|
||
f"{self.log_prefix} 话题相似度检查: '{new_topic}' 与历史话题 '{historical_topic}' 相似度 {similarity:.2%},使用历史标题"
|
||
)
|
||
|
||
return topic_mapping
|
||
|
||
def _build_numbered_messages_for_llm(
|
||
self, messages: List[DatabaseMessages]
|
||
) -> tuple[List[str], Dict[int, str], Dict[int, str], Dict[int, Set[str]]]:
|
||
"""
|
||
将消息转为带编号的字符串,供 LLM 选择使用。
|
||
|
||
返回:
|
||
numbered_lines: ["1. xxx", "2. yyy", ...] # 带编号,用于 LLM 选择
|
||
index_to_msg_str: idx -> "idx. xxx" # 带编号,用于 LLM 选择
|
||
index_to_msg_text: idx -> "xxx" # 不带编号,用于最终存储
|
||
index_to_participants: idx -> {nickname1, nickname2, ...}
|
||
"""
|
||
numbered_lines: List[str] = []
|
||
index_to_msg_str: Dict[int, str] = {}
|
||
index_to_msg_text: Dict[int, str] = {} # 不带编号的消息文本
|
||
index_to_participants: Dict[int, Set[str]] = {}
|
||
|
||
for idx, msg in enumerate(messages, start=1):
|
||
# 使用 build_readable_messages 生成可读文本
|
||
try:
|
||
text = build_readable_messages(
|
||
messages=[msg],
|
||
replace_bot_name=True,
|
||
timestamp_mode="normal_no_YMD",
|
||
read_mark=0.0,
|
||
truncate=False,
|
||
show_actions=False,
|
||
).strip()
|
||
except Exception:
|
||
# 回退到简单文本
|
||
text = getattr(msg, "processed_plain_text", "") or ""
|
||
|
||
# 获取发言人昵称
|
||
participants: Set[str] = set()
|
||
try:
|
||
platform = (
|
||
getattr(msg, "user_platform", None)
|
||
or (msg.user_info.platform if msg.user_info else None)
|
||
or msg.chat_info.platform
|
||
)
|
||
user_id = msg.user_info.user_id if msg.user_info else None
|
||
if platform and user_id:
|
||
person = Person(platform=platform, user_id=user_id)
|
||
if person.person_name:
|
||
participants.add(person.person_name)
|
||
except Exception:
|
||
pass
|
||
|
||
# 带编号的字符串(用于 LLM 选择)
|
||
line = f"{idx}. {text}"
|
||
numbered_lines.append(line)
|
||
index_to_msg_str[idx] = line
|
||
# 不带编号的文本(用于最终存储)
|
||
index_to_msg_text[idx] = text
|
||
index_to_participants[idx] = participants
|
||
|
||
return numbered_lines, index_to_msg_str, index_to_msg_text, index_to_participants
|
||
|
||
async def _analyze_topics_with_llm(
|
||
self,
|
||
numbered_lines: List[str],
|
||
existing_topics: List[str],
|
||
) -> tuple[bool, Dict[str, List[int]]]:
|
||
"""
|
||
使用 LLM 识别本次检查中的话题,并为每个话题选择相关消息编号。
|
||
|
||
要求:
|
||
- 话题用一句话清晰描述正在发生的事件,包括时间、人物、主要事件和主题;
|
||
- 可以有 1 个或多个话题;
|
||
- 若某个话题与历史话题列表中的某个话题是同一件事,请直接使用历史话题的字符串;
|
||
- 输出 JSON,格式:
|
||
[
|
||
{
|
||
"topic": "话题标题字符串",
|
||
"message_indices": [1, 2, 5]
|
||
},
|
||
...
|
||
]
|
||
"""
|
||
if not numbered_lines:
|
||
return False, {}
|
||
|
||
history_topics_block = "\n".join(f"- {t}" for t in existing_topics) if existing_topics else "(当前无历史话题)"
|
||
messages_block = "\n".join(numbered_lines)
|
||
|
||
prompt = await global_prompt_manager.format_prompt(
|
||
"hippo_topic_analysis_prompt",
|
||
history_topics_block=history_topics_block,
|
||
messages_block=messages_block,
|
||
)
|
||
|
||
try:
|
||
response, _ = await self.summarizer_llm.generate_response_async(
|
||
prompt=prompt,
|
||
temperature=0.3,
|
||
)
|
||
|
||
logger.info(f"{self.log_prefix} 话题识别LLM Prompt: {prompt}")
|
||
logger.info(f"{self.log_prefix} 话题识别LLM Response: {response}")
|
||
|
||
# 尝试从响应中提取JSON代码块
|
||
json_str = None
|
||
json_pattern = r"```json\s*(.*?)\s*```"
|
||
matches = re.findall(json_pattern, response, re.DOTALL)
|
||
|
||
if matches:
|
||
# 找到JSON代码块,使用第一个匹配
|
||
json_str = matches[0].strip()
|
||
else:
|
||
# 如果没有找到代码块,尝试查找JSON数组的开始和结束位置
|
||
# 查找第一个 [ 和最后一个 ]
|
||
start_idx = response.find("[")
|
||
end_idx = response.rfind("]")
|
||
if start_idx != -1 and end_idx != -1 and end_idx > start_idx:
|
||
json_str = response[start_idx : end_idx + 1].strip()
|
||
else:
|
||
# 如果还是找不到,尝试直接使用整个响应(移除可能的markdown标记)
|
||
json_str = response.strip()
|
||
json_str = re.sub(r"^```json\s*", "", json_str, flags=re.MULTILINE)
|
||
json_str = re.sub(r"^```\s*", "", json_str, flags=re.MULTILINE)
|
||
json_str = json_str.strip()
|
||
|
||
# 使用json_repair修复可能的JSON错误
|
||
if json_str:
|
||
try:
|
||
repaired_json = repair_json(json_str)
|
||
result = json.loads(repaired_json) if isinstance(repaired_json, str) else repaired_json
|
||
except Exception as repair_error:
|
||
# 如果repair失败,尝试直接解析
|
||
logger.warning(f"{self.log_prefix} JSON修复失败,尝试直接解析: {repair_error}")
|
||
result = json.loads(json_str)
|
||
else:
|
||
raise ValueError("无法从响应中提取JSON内容")
|
||
|
||
if not isinstance(result, list):
|
||
logger.error(f"{self.log_prefix} 话题识别返回的 JSON 不是列表: {result}")
|
||
return False, {}
|
||
|
||
topic_to_indices: Dict[str, List[int]] = {}
|
||
for item in result:
|
||
if not isinstance(item, dict):
|
||
continue
|
||
topic = item.get("topic")
|
||
indices = item.get("message_indices") or item.get("messages") or []
|
||
if not topic or not isinstance(topic, str):
|
||
continue
|
||
if isinstance(indices, list):
|
||
valid_indices: List[int] = []
|
||
for v in indices:
|
||
try:
|
||
iv = int(v)
|
||
if iv > 0:
|
||
valid_indices.append(iv)
|
||
except (TypeError, ValueError):
|
||
continue
|
||
if valid_indices:
|
||
topic_to_indices[topic] = valid_indices
|
||
|
||
return True, topic_to_indices
|
||
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 话题识别 LLM 调用或解析失败: {e}")
|
||
logger.error(f"{self.log_prefix} LLM响应: {response if 'response' in locals() else 'N/A'}")
|
||
return False, {}
|
||
|
||
async def _finalize_and_store_topic(
|
||
self,
|
||
topic: str,
|
||
item: TopicCacheItem,
|
||
start_time: float,
|
||
end_time: float,
|
||
):
|
||
"""
|
||
对某个话题进行最终打包存储:
|
||
1. 将 messages(list[str]) 拼接为 original_text;
|
||
2. 使用 LLM 对 original_text 进行总结,得到 summary 和 keywords,theme 直接使用话题字符串;
|
||
3. 写入数据库 ChatHistory;
|
||
4. 完成后,调用方会从缓存中删除该话题。
|
||
"""
|
||
if not item.messages:
|
||
logger.info(f"{self.log_prefix} 话题[{topic}] 无消息内容,跳过打包")
|
||
return
|
||
|
||
original_text = "\n".join(item.messages)
|
||
|
||
logger.info(
|
||
f"{self.log_prefix} 开始打包话题[{topic}] | 消息数: {len(item.messages)} | 时间范围: {start_time:.2f} - {end_time:.2f}"
|
||
)
|
||
|
||
# 使用 LLM 进行总结(基于话题名)
|
||
success, keywords, summary, key_point = await self._compress_with_llm(original_text, topic)
|
||
if not success:
|
||
logger.warning(f"{self.log_prefix} 话题[{topic}] LLM 概括失败,不写入数据库")
|
||
return
|
||
|
||
participants = list(item.participants)
|
||
|
||
await self._store_to_database(
|
||
start_time=start_time,
|
||
end_time=end_time,
|
||
original_text=original_text,
|
||
participants=participants,
|
||
theme=topic, # 主题直接使用话题名
|
||
keywords=keywords,
|
||
summary=summary,
|
||
key_point=key_point,
|
||
)
|
||
|
||
logger.info(
|
||
f"{self.log_prefix} 话题[{topic}] 成功打包并存储 | 消息数: {len(item.messages)} | 参与者数: {len(participants)}"
|
||
)
|
||
|
||
async def _compress_with_llm(self, original_text: str, topic: str) -> tuple[bool, List[str], str, List[str]]:
|
||
"""
|
||
使用LLM压缩聊天内容(用于单个话题的最终总结)
|
||
|
||
Args:
|
||
original_text: 聊天记录原文
|
||
topic: 话题名称
|
||
|
||
Returns:
|
||
tuple[bool, List[str], str, List[str]]: (是否成功, 关键词列表, 概括, 关键信息列表)
|
||
"""
|
||
prompt = await global_prompt_manager.format_prompt(
|
||
"hippo_topic_summary_prompt",
|
||
topic=topic,
|
||
original_text=original_text,
|
||
)
|
||
|
||
try:
|
||
response, _ = await self.summarizer_llm.generate_response_async(prompt=prompt)
|
||
|
||
# 解析JSON响应
|
||
json_str = response.strip()
|
||
json_str = re.sub(r"^```json\s*", "", json_str, flags=re.MULTILINE)
|
||
json_str = re.sub(r"^```\s*", "", json_str, flags=re.MULTILINE)
|
||
json_str = json_str.strip()
|
||
|
||
# 查找JSON对象的开始与结束
|
||
start_idx = json_str.find("{")
|
||
if start_idx == -1:
|
||
raise ValueError("未找到JSON对象开始标记")
|
||
|
||
end_idx = json_str.rfind("}")
|
||
if end_idx == -1 or end_idx <= start_idx:
|
||
logger.warning(f"{self.log_prefix} JSON缺少结束标记,尝试自动修复")
|
||
extracted_json = json_str[start_idx:]
|
||
else:
|
||
extracted_json = json_str[start_idx : end_idx + 1]
|
||
|
||
def _parse_with_quote_fix(payload: str) -> Dict[str, Any]:
|
||
fixed_chars: List[str] = []
|
||
in_string = False
|
||
escape_next = False
|
||
i = 0
|
||
while i < len(payload):
|
||
char = payload[i]
|
||
if escape_next:
|
||
fixed_chars.append(char)
|
||
escape_next = False
|
||
elif char == "\\":
|
||
fixed_chars.append(char)
|
||
escape_next = True
|
||
elif char == '"' and not escape_next:
|
||
fixed_chars.append(char)
|
||
in_string = not in_string
|
||
elif in_string and char in {"“", "”"}:
|
||
# 在字符串值内部,将中文引号替换为转义的英文引号
|
||
fixed_chars.append('\\"')
|
||
else:
|
||
fixed_chars.append(char)
|
||
i += 1
|
||
|
||
repaired = "".join(fixed_chars)
|
||
return json.loads(repaired)
|
||
|
||
try:
|
||
result = json.loads(extracted_json)
|
||
except json.JSONDecodeError:
|
||
try:
|
||
repaired_json = repair_json(extracted_json)
|
||
if isinstance(repaired_json, str):
|
||
result = json.loads(repaired_json)
|
||
else:
|
||
result = repaired_json
|
||
except Exception as repair_error:
|
||
logger.warning(f"{self.log_prefix} repair_json 失败,使用引号修复: {repair_error}")
|
||
result = _parse_with_quote_fix(extracted_json)
|
||
|
||
keywords = result.get("keywords", [])
|
||
summary = result.get("summary", "")
|
||
key_point = result.get("key_point", [])
|
||
|
||
if not (keywords and summary) and key_point:
|
||
logger.warning(f"{self.log_prefix} LLM返回的JSON中缺少字段,原文\n{response}")
|
||
|
||
# 确保keywords和key_point是列表
|
||
if isinstance(keywords, str):
|
||
keywords = [keywords]
|
||
if isinstance(key_point, str):
|
||
key_point = [key_point]
|
||
|
||
return True, keywords, summary, key_point
|
||
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} LLM压缩聊天内容时出错: {e}")
|
||
logger.error(f"{self.log_prefix} LLM响应: {response if 'response' in locals() else 'N/A'}")
|
||
# 返回失败标志和默认值
|
||
return False, [], "压缩失败,无法生成概括", []
|
||
|
||
async def _store_to_database(
|
||
self,
|
||
start_time: float,
|
||
end_time: float,
|
||
original_text: str,
|
||
participants: List[str],
|
||
theme: str,
|
||
keywords: List[str],
|
||
summary: str,
|
||
key_point: Optional[List[str]] = None,
|
||
):
|
||
"""存储到数据库"""
|
||
try:
|
||
from src.common.database.database_model import ChatHistory
|
||
from src.plugin_system.apis import database_api
|
||
|
||
# 准备数据
|
||
data = {
|
||
"chat_id": self.chat_id,
|
||
"start_time": start_time,
|
||
"end_time": end_time,
|
||
"original_text": original_text,
|
||
"participants": json.dumps(participants, ensure_ascii=False),
|
||
"theme": theme,
|
||
"keywords": json.dumps(keywords, ensure_ascii=False),
|
||
"summary": summary,
|
||
"count": 0,
|
||
}
|
||
|
||
# 存储 key_point(如果存在)
|
||
if key_point is not None:
|
||
data["key_point"] = json.dumps(key_point, ensure_ascii=False)
|
||
|
||
# 使用db_save存储(使用start_time和chat_id作为唯一标识)
|
||
# 由于可能有多条记录,我们使用组合键,但peewee不支持,所以使用start_time作为唯一标识
|
||
# 但为了避免冲突,我们使用组合键:chat_id + start_time
|
||
# 由于peewee不支持组合键,我们直接创建新记录(不提供key_field和key_value)
|
||
saved_record = await database_api.db_save(
|
||
ChatHistory,
|
||
data=data,
|
||
)
|
||
|
||
if saved_record:
|
||
logger.debug(f"{self.log_prefix} 成功存储聊天历史记录到数据库")
|
||
else:
|
||
logger.warning(f"{self.log_prefix} 存储聊天历史记录到数据库失败")
|
||
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 存储到数据库时出错: {e}")
|
||
import traceback
|
||
|
||
traceback.print_exc()
|
||
raise
|
||
|
||
async def start(self):
|
||
"""启动后台定期检查循环"""
|
||
if self._running:
|
||
logger.warning(f"{self.log_prefix} 后台循环已在运行,无需重复启动")
|
||
return
|
||
|
||
# 加载聊天批次(如果有)
|
||
await self._load_batch_from_disk()
|
||
|
||
self._running = True
|
||
self._periodic_task = asyncio.create_task(self._periodic_check_loop())
|
||
logger.info(f"{self.log_prefix} 已启动后台定期检查循环 | 检查间隔: {self.check_interval}秒")
|
||
|
||
async def stop(self):
|
||
"""停止后台定期检查循环"""
|
||
self._running = False
|
||
if self._periodic_task:
|
||
self._periodic_task.cancel()
|
||
try:
|
||
await self._periodic_task
|
||
except asyncio.CancelledError:
|
||
pass
|
||
self._periodic_task = None
|
||
logger.info(f"{self.log_prefix} 已停止后台定期检查循环")
|
||
|
||
async def _periodic_check_loop(self):
|
||
"""后台定期检查循环"""
|
||
try:
|
||
while self._running:
|
||
# 执行一次检查
|
||
await self.process()
|
||
|
||
# 等待指定间隔后再次检查
|
||
await asyncio.sleep(self.check_interval)
|
||
except asyncio.CancelledError:
|
||
logger.info(f"{self.log_prefix} 后台检查循环被取消")
|
||
raise
|
||
except Exception as e:
|
||
logger.error(f"{self.log_prefix} 后台检查循环出错: {e}")
|
||
import traceback
|
||
|
||
traceback.print_exc()
|
||
self._running = False
|
||
|
||
|
||
init_prompt()
|