MaiBot/src/chat/brain_chat/brain_planner.py

687 lines
30 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import json
import time
import traceback
import random
import re
from typing import Dict, Optional, Tuple, List, TYPE_CHECKING
from rich.traceback import install
from datetime import datetime
from json_repair import repair_json
from src.llm_models.utils_model import LLMRequest
from src.config.config import global_config, model_config
from src.common.logger import get_logger
from src.common.data_models.info_data_model import ActionPlannerInfo
from src.chat.utils.prompt_builder import Prompt, global_prompt_manager
from src.chat.utils.chat_message_builder import (
build_readable_actions,
get_actions_by_timestamp_with_chat,
build_readable_messages_with_id,
get_raw_msg_before_timestamp_with_chat,
)
from src.chat.utils.utils import get_chat_type_and_target_info
from src.chat.planner_actions.action_manager import ActionManager
from src.chat.message_receive.chat_stream import get_chat_manager
from src.plugin_system.base.component_types import ActionInfo, ComponentType, ActionActivationType
from src.plugin_system.core.component_registry import component_registry
if TYPE_CHECKING:
from src.common.data_models.info_data_model import TargetPersonInfo
from src.common.data_models.database_data_model import DatabaseMessages
logger = get_logger("planner")
install(extra_lines=3)
def init_prompt():
# ReAct 形式的 Planner Prompt
Prompt(
"""
{time_block}
{name_block}
{chat_context_description},以下是具体的聊天内容
**聊天内容**
{chat_content_block}
**动作记录**
{actions_before_now_block}
**可用的action**
reply
动作描述:
进行回复,你可以自然的顺着正在进行的聊天内容进行回复或自然的提出一个问题
{{
"action": "reply",
"target_message_id":"想要回复的消息id",
"reason":"回复的原因"
}}
wait
动作描述:
暂时不再发言,等待指定时间。适用于以下情况:
- 你已经表达清楚一轮,想给对方留出空间
- 你感觉对方的话还没说完,或者自己刚刚发了好几条连续消息
- 你想要等待一定时间来让对方把话说完,或者等待对方反应
- 你想保持安静,专注""而不是马上回复
请你根据上下文来判断要等待多久,请你灵活判断:
- 如果你们交流间隔时间很短,聊的很频繁,不宜等待太久
- 如果你们交流间隔时间很长,聊的很少,可以等待较长时间
{{
"action": "wait",
"target_message_id":"想要作为这次等待依据的消息id通常是对方的最新消息",
"wait_seconds": 等待的秒数必填例如5 表示等待5秒,
"reason":"选择等待的原因"
}}
complete_talk
动作描述:
当前聊天暂时结束了,对方离开,没有更多话题了
你可以使用该动作来暂时休息,等待对方有新发言再继续:
- 多次wait之后对方迟迟不回复消息才用
- 如果对方只是短暂不回复应该使用wait而不是complete_talk
- 聊天内容显示当前聊天已经结束或者没有新内容时候选择complete_talk
选择此动作后,将不再继续循环思考,直到收到对方的新消息
{{
"action": "complete_talk",
"target_message_id":"触发完成对话的消息id通常是对方的最新消息",
"reason":"选择完成对话的原因"
}}
{action_options_text}
请选择合适的action并说明触发action的消息id和选择该action的原因。消息id格式:m+数字
先输出你的选择思考理由再输出你选择的action理由是一段平文本不要分点精简。
**动作选择要求**
请你根据聊天内容,用户的最新消息和以下标准选择合适的动作:
{plan_style}
{moderation_prompt}
请选择所有符合使用要求的action动作用json格式输出如果输出多个json每个json都要单独用```json包裹你可以重复使用同一个动作或不同动作:
**示例**
// 理由文本
```json
{{
"action":"动作名",
"target_message_id":"触发动作的消息id",
//对应参数
}}
```
```json
{{
"action":"动作名",
"target_message_id":"触发动作的消息id",
//对应参数
}}
```
""",
"brain_planner_prompt_react",
)
Prompt(
"""
{action_name}
动作描述:{action_description}
使用条件:
{action_require}
{{
"action": "{action_name}",{action_parameters},
"target_message_id":"触发action的消息id",
"reason":"触发action的原因"
}}
""",
"brain_action_prompt",
)
class BrainPlanner:
def __init__(self, chat_id: str, action_manager: ActionManager):
self.chat_id = chat_id
self.log_prefix = f"[{get_chat_manager().get_stream_name(chat_id) or chat_id}]"
self.action_manager = action_manager
# LLM规划器配置
self.planner_llm = LLMRequest(
model_set=model_config.model_task_config.planner, request_type="planner"
) # 用于动作规划
self.last_obs_time_mark = 0.0
# 计划日志记录
self.plan_log: List[Tuple[str, float, List[ActionPlannerInfo]]] = []
def find_message_by_id(
self, message_id: str, message_id_list: List[Tuple[str, "DatabaseMessages"]]
) -> Optional["DatabaseMessages"]:
# sourcery skip: use-next
"""
根据message_id从message_id_list中查找对应的原始消息
Args:
message_id: 要查找的消息ID
message_id_list: 消息ID列表格式为[{'id': str, 'message': dict}, ...]
Returns:
找到的原始消息字典如果未找到则返回None
"""
for item in message_id_list:
if item[0] == message_id:
return item[1]
return None
def _parse_single_action(
self,
action_json: dict,
message_id_list: List[Tuple[str, "DatabaseMessages"]],
current_available_actions: List[Tuple[str, ActionInfo]],
) -> List[ActionPlannerInfo]:
"""解析单个action JSON并返回ActionPlannerInfo列表"""
action_planner_infos = []
try:
action = action_json.get("action", "complete_talk")
logger.debug(f"{self.log_prefix}解析动作JSON: action={action}, json={action_json}")
reasoning = action_json.get("reason", "未提供原因")
action_data = {key: value for key, value in action_json.items() if key not in ["action", "reason"]}
# 非complete_talk动作需要target_message_id
target_message = None
if target_message_id := action_json.get("target_message_id"):
# 根据target_message_id查找原始消息
target_message = self.find_message_by_id(target_message_id, message_id_list)
if target_message is None:
logger.warning(f"{self.log_prefix}无法找到target_message_id '{target_message_id}' 对应的消息")
# 选择最新消息作为target_message
target_message = message_id_list[-1][1]
else:
target_message = message_id_list[-1][1]
logger.debug(f"{self.log_prefix}动作'{action}'缺少target_message_id使用最新消息作为target_message")
# 验证action是否可用
available_action_names = [action_name for action_name, _ in current_available_actions]
# 内部保留动作(不依赖插件系统)
# 注意listening 已合并到 wait 中,如果遇到 listening 则转换为 wait
internal_action_names = ["complete_talk", "reply", "wait_time", "wait", "listening"]
logger.debug(f"{self.log_prefix}动作验证: action={action}, internal={internal_action_names}, available={available_action_names}")
# 将 listening 转换为 wait向后兼容
if action == "listening":
logger.debug(f"{self.log_prefix}检测到 listening 动作,已合并到 wait自动转换")
action = "wait"
if action not in internal_action_names and action not in available_action_names:
logger.warning(
f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{action}' (内部动作: {internal_action_names}, 可用插件动作: {available_action_names}),将强制使用 'complete_talk'"
)
reasoning = (
f"LLM 返回了当前不可用的动作 '{action}' (可用: {available_action_names})。原始理由: {reasoning}"
)
action = "complete_talk"
logger.warning(f"{self.log_prefix}动作已转换为 complete_talk")
# 创建ActionPlannerInfo对象
# 将列表转换为字典格式
available_actions_dict = dict(current_available_actions)
action_planner_infos.append(
ActionPlannerInfo(
action_type=action,
reasoning=reasoning,
action_data=action_data,
action_message=target_message,
available_actions=available_actions_dict,
)
)
except Exception as e:
logger.error(f"{self.log_prefix}解析单个action时出错: {e}")
# 将列表转换为字典格式
available_actions_dict = dict(current_available_actions)
action_planner_infos.append(
ActionPlannerInfo(
action_type="complete_talk",
reasoning=f"解析单个action时出错: {e}",
action_data={},
action_message=None,
available_actions=available_actions_dict,
)
)
return action_planner_infos
async def plan(
self,
available_actions: Dict[str, ActionInfo],
loop_start_time: float = 0.0,
) -> List[ActionPlannerInfo]:
# sourcery skip: use-named-expression
"""
规划器 (Planner): 使用LLM根据上下文决定做出什么动作ReAct模式
"""
# 获取聊天上下文
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=self.chat_id,
timestamp=time.time(),
limit=int(global_config.chat.max_context_size * 0.6),
filter_intercept_message_level=1,
)
message_id_list: list[Tuple[str, "DatabaseMessages"]] = []
chat_content_block, message_id_list = build_readable_messages_with_id(
messages=message_list_before_now,
timestamp_mode="normal_no_YMD",
read_mark=self.last_obs_time_mark,
truncate=True,
show_actions=True,
)
message_list_before_now_short = message_list_before_now[-int(global_config.chat.max_context_size * 0.3) :]
chat_content_block_short, message_id_list_short = build_readable_messages_with_id(
messages=message_list_before_now_short,
timestamp_mode="normal_no_YMD",
truncate=False,
show_actions=False,
)
self.last_obs_time_mark = time.time()
# 获取必要信息
is_group_chat, chat_target_info, current_available_actions = self.get_necessary_info()
# 提及/被@ 的处理由心流或统一判定模块驱动Planner 不再做硬编码强制回复
# 应用激活类型过滤
filtered_actions = self._filter_actions_by_activation_type(available_actions, chat_content_block_short)
logger.debug(f"{self.log_prefix}过滤后有{len(filtered_actions)}个可用动作")
# 构建包含所有动作的提示词:使用统一的 ReAct Prompt
prompt_key = "brain_planner_prompt_react"
# 这里不记录日志,避免重复打印,由调用方按需控制 log_prompt
prompt, message_id_list = await self.build_planner_prompt(
chat_target_info=chat_target_info,
current_available_actions=filtered_actions,
chat_content_block=chat_content_block,
message_id_list=message_id_list,
prompt_key=prompt_key,
)
# 调用LLM获取决策
reasoning, actions = await self._execute_main_planner(
prompt=prompt,
message_id_list=message_id_list,
filtered_actions=filtered_actions,
available_actions=available_actions,
loop_start_time=loop_start_time,
)
# 记录和展示计划日志
logger.info(
f"{self.log_prefix}Planner: {reasoning}。选择了{len(actions)}个动作: {' '.join([a.action_type for a in actions])}"
)
self.add_plan_log(reasoning, actions)
return actions
async def build_planner_prompt(
self,
chat_target_info: Optional["TargetPersonInfo"],
current_available_actions: Dict[str, ActionInfo],
message_id_list: List[Tuple[str, "DatabaseMessages"]],
chat_content_block: str = "",
interest: str = "",
prompt_key: str = "brain_planner_prompt_react",
) -> tuple[str, List[Tuple[str, "DatabaseMessages"]]]:
"""构建 Planner LLM 的提示词 (获取模板并填充数据)"""
try:
# 获取最近执行过的动作
actions_before_now = get_actions_by_timestamp_with_chat(
chat_id=self.chat_id,
timestamp_start=time.time() - 600,
timestamp_end=time.time(),
limit=6,
)
actions_before_now_block = build_readable_actions(actions=actions_before_now)
if actions_before_now_block:
actions_before_now_block = f"你刚刚选择并执行过的action是\n{actions_before_now_block}"
else:
actions_before_now_block = ""
if chat_target_info:
# 构建聊天上下文描述
chat_context_description = (
f"你正在和 {chat_target_info.person_name or chat_target_info.user_nickname or '对方'} 聊天中"
)
# 构建动作选项块
action_options_block = await self._build_action_options_block(current_available_actions)
# 其他信息
moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。"
time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
bot_name = global_config.bot.nickname
bot_nickname = (
f",也可以叫你{','.join(global_config.bot.alias_names)}" if global_config.bot.alias_names else ""
)
name_block = f"你的名字是{bot_name}{bot_nickname},请注意哪些是你自己的发言。"
# 获取主规划器模板并填充
planner_prompt_template = await global_prompt_manager.get_prompt_async(prompt_key)
prompt = planner_prompt_template.format(
time_block=time_block,
chat_context_description=chat_context_description,
chat_content_block=chat_content_block,
actions_before_now_block=actions_before_now_block,
action_options_text=action_options_block,
moderation_prompt=moderation_prompt_block,
name_block=name_block,
interest=interest,
plan_style=global_config.personality.private_plan_style,
)
return prompt, message_id_list
except Exception as e:
logger.error(f"构建 Planner 提示词时出错: {e}")
logger.error(traceback.format_exc())
return "构建 Planner Prompt 时出错", []
def get_necessary_info(self) -> Tuple[bool, Optional["TargetPersonInfo"], Dict[str, ActionInfo]]:
"""
获取 Planner 需要的必要信息
"""
is_group_chat = True
is_group_chat, chat_target_info = get_chat_type_and_target_info(self.chat_id)
logger.debug(f"{self.log_prefix}获取到聊天信息 - 群聊: {is_group_chat}, 目标信息: {chat_target_info}")
current_available_actions_dict = self.action_manager.get_using_actions()
# 获取完整的动作信息
all_registered_actions: Dict[str, ActionInfo] = component_registry.get_components_by_type( # type: ignore
ComponentType.ACTION
)
current_available_actions = {}
for action_name in current_available_actions_dict:
if action_name in all_registered_actions:
current_available_actions[action_name] = all_registered_actions[action_name]
else:
logger.warning(f"{self.log_prefix}使用中的动作 {action_name} 未在已注册动作中找到")
return is_group_chat, chat_target_info, current_available_actions
def _filter_actions_by_activation_type(
self, available_actions: Dict[str, ActionInfo], chat_content_block: str
) -> Dict[str, ActionInfo]:
"""根据激活类型过滤动作"""
filtered_actions = {}
for action_name, action_info in available_actions.items():
if action_info.activation_type == ActionActivationType.NEVER:
logger.debug(f"{self.log_prefix}动作 {action_name} 设置为 NEVER 激活类型,跳过")
continue
elif action_info.activation_type in [ActionActivationType.LLM_JUDGE, ActionActivationType.ALWAYS]:
filtered_actions[action_name] = action_info
elif action_info.activation_type == ActionActivationType.RANDOM:
if random.random() < action_info.random_activation_probability:
filtered_actions[action_name] = action_info
elif action_info.activation_type == ActionActivationType.KEYWORD:
if action_info.activation_keywords:
for keyword in action_info.activation_keywords:
if keyword in chat_content_block:
filtered_actions[action_name] = action_info
break
else:
logger.warning(f"{self.log_prefix}未知的激活类型: {action_info.activation_type},跳过处理")
return filtered_actions
async def _build_action_options_block(self, current_available_actions: Dict[str, ActionInfo]) -> str:
# sourcery skip: use-join
"""构建动作选项块"""
if not current_available_actions:
return ""
action_options_block = ""
for action_name, action_info in current_available_actions.items():
# 构建参数文本
param_text = ""
if action_info.action_parameters:
param_text = "\n"
for param_name, param_description in action_info.action_parameters.items():
param_text += f' "{param_name}":"{param_description}"\n'
param_text = param_text.rstrip("\n")
# 构建要求文本
require_text = ""
for require_item in action_info.action_require:
require_text += f"- {require_item}\n"
require_text = require_text.rstrip("\n")
# 获取动作提示模板并填充
using_action_prompt = await global_prompt_manager.get_prompt_async("brain_action_prompt")
using_action_prompt = using_action_prompt.format(
action_name=action_name,
action_description=action_info.description,
action_parameters=param_text,
action_require=require_text,
)
action_options_block += using_action_prompt
return action_options_block
async def _execute_main_planner(
self,
prompt: str,
message_id_list: List[Tuple[str, "DatabaseMessages"]],
filtered_actions: Dict[str, ActionInfo],
available_actions: Dict[str, ActionInfo],
loop_start_time: float,
) -> Tuple[str, List[ActionPlannerInfo]]:
"""执行主规划器"""
llm_content = None
actions: List[ActionPlannerInfo] = []
extracted_reasoning = ""
try:
# 调用LLM
llm_content, (reasoning_content, _, _) = await self.planner_llm.generate_response_async(prompt=prompt)
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.info(f"{self.log_prefix}规划器原始响应: {llm_content}")
if global_config.debug.show_planner_prompt:
logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.info(f"{self.log_prefix}规划器原始响应: {llm_content}")
if reasoning_content:
logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}")
else:
logger.debug(f"{self.log_prefix}规划器原始提示词: {prompt}")
logger.debug(f"{self.log_prefix}规划器原始响应: {llm_content}")
if reasoning_content:
logger.debug(f"{self.log_prefix}规划器推理: {reasoning_content}")
except Exception as req_e:
logger.error(f"{self.log_prefix}LLM 请求执行失败: {req_e}")
extracted_reasoning = f"LLM 请求失败,模型出现问题: {req_e}"
return extracted_reasoning, [
ActionPlannerInfo(
action_type="complete_talk",
reasoning=extracted_reasoning,
action_data={},
action_message=None,
available_actions=available_actions,
)
]
# 解析LLM响应
if llm_content:
try:
json_objects, extracted_reasoning = self._extract_json_from_markdown(llm_content)
if json_objects:
logger.info(f"{self.log_prefix}从响应中提取到{len(json_objects)}个JSON对象")
for i, json_obj in enumerate(json_objects):
logger.info(f"{self.log_prefix}解析第{i+1}个JSON对象: {json_obj}")
filtered_actions_list = list(filtered_actions.items())
for json_obj in json_objects:
parsed_actions = self._parse_single_action(json_obj, message_id_list, filtered_actions_list)
logger.info(f"{self.log_prefix}解析后的动作: {[a.action_type for a in parsed_actions]}")
actions.extend(parsed_actions)
else:
# 尝试解析为直接的JSON
logger.warning(f"{self.log_prefix}LLM没有返回可用动作: {llm_content}")
extracted_reasoning = extracted_reasoning or "LLM没有返回可用动作"
actions = self._create_complete_talk(extracted_reasoning, available_actions)
except Exception as json_e:
logger.warning(f"{self.log_prefix}解析LLM响应JSON失败 {json_e}. LLM原始输出: '{llm_content}'")
extracted_reasoning = f"解析LLM响应JSON失败: {json_e}"
actions = self._create_complete_talk(extracted_reasoning, available_actions)
traceback.print_exc()
else:
extracted_reasoning = "规划器没有获得LLM响应"
actions = self._create_complete_talk(extracted_reasoning, available_actions)
# 添加循环开始时间到所有动作
for action in actions:
action.action_data = action.action_data or {}
action.action_data["loop_start_time"] = loop_start_time
logger.debug(
f"{self.log_prefix}规划器决定执行{len(actions)}个动作: {' '.join([a.action_type for a in actions])}"
)
return extracted_reasoning, actions
def _create_complete_talk(self, reasoning: str, available_actions: Dict[str, ActionInfo]) -> List[ActionPlannerInfo]:
"""创建complete_talk"""
return [
ActionPlannerInfo(
action_type="complete_talk",
reasoning=reasoning,
action_data={},
action_message=None,
available_actions=available_actions,
)
]
def add_plan_log(self, reasoning: str, actions: List[ActionPlannerInfo]):
"""添加计划日志"""
self.plan_log.append((reasoning, time.time(), actions))
if len(self.plan_log) > 20:
self.plan_log.pop(0)
def _extract_json_from_markdown(self, content: str) -> Tuple[List[dict], str]:
# sourcery skip: for-append-to-extend
"""从Markdown格式的内容中提取JSON对象和推理内容"""
json_objects = []
reasoning_content = ""
# 使用正则表达式查找```json包裹的JSON内容
json_pattern = r"```json\s*(.*?)\s*```"
markdown_matches = re.findall(json_pattern, content, re.DOTALL)
# 提取JSON之前的内容作为推理文本
first_json_pos = len(content)
if markdown_matches:
# 找到第一个```json的位置
first_json_pos = content.find("```json")
if first_json_pos > 0:
reasoning_content = content[:first_json_pos].strip()
# 清理推理内容中的注释标记
reasoning_content = re.sub(r"^//\s*", "", reasoning_content, flags=re.MULTILINE)
reasoning_content = reasoning_content.strip()
# 处理```json包裹的JSON
for match in markdown_matches:
try:
# 清理可能的注释和格式问题
json_str = re.sub(r"//.*?\n", "\n", match) # 移除单行注释
json_str = re.sub(r"/\*.*?\*/", "", json_str, flags=re.DOTALL) # 移除多行注释
if json_str := json_str.strip():
# 先尝试将整个块作为一个JSON对象或数组适用于多行JSON
try:
json_obj = json.loads(repair_json(json_str))
if isinstance(json_obj, dict):
json_objects.append(json_obj)
elif isinstance(json_obj, list):
for item in json_obj:
if isinstance(item, dict):
json_objects.append(item)
except json.JSONDecodeError:
# 如果整个块解析失败尝试按行分割适用于多个单行JSON对象
lines = [line.strip() for line in json_str.split("\n") if line.strip()]
for line in lines:
try:
# 尝试解析每一行作为独立的JSON对象
json_obj = json.loads(repair_json(line))
if isinstance(json_obj, dict):
json_objects.append(json_obj)
elif isinstance(json_obj, list):
for item in json_obj:
if isinstance(item, dict):
json_objects.append(item)
except json.JSONDecodeError:
# 单行解析失败,继续下一行
continue
except Exception as e:
logger.warning(f"{self.log_prefix}解析JSON块失败: {e}, 块内容: {match[:100]}...")
continue
# 如果没有找到完整的```json```块,尝试查找不完整的代码块(缺少结尾```
if not json_objects:
json_start_pos = content.find("```json")
if json_start_pos != -1:
# 找到```json之后的内容
json_content_start = json_start_pos + 7 # ```json的长度
# 提取从```json之后到内容结尾的所有内容
incomplete_json_str = content[json_content_start:].strip()
# 提取JSON之前的内容作为推理文本
if json_start_pos > 0:
reasoning_content = content[:json_start_pos].strip()
reasoning_content = re.sub(r"^//\s*", "", reasoning_content, flags=re.MULTILINE)
reasoning_content = reasoning_content.strip()
if incomplete_json_str:
try:
# 清理可能的注释和格式问题
json_str = re.sub(r"//.*?\n", "\n", incomplete_json_str)
json_str = re.sub(r"/\*.*?\*/", "", json_str, flags=re.DOTALL)
json_str = json_str.strip()
if json_str:
# 尝试按行分割每行可能是一个JSON对象
lines = [line.strip() for line in json_str.split("\n") if line.strip()]
for line in lines:
try:
json_obj = json.loads(repair_json(line))
if isinstance(json_obj, dict):
json_objects.append(json_obj)
elif isinstance(json_obj, list):
for item in json_obj:
if isinstance(item, dict):
json_objects.append(item)
except json.JSONDecodeError:
pass
# 如果按行解析没有成功尝试将整个块作为一个JSON对象或数组
if not json_objects:
try:
json_obj = json.loads(repair_json(json_str))
if isinstance(json_obj, dict):
json_objects.append(json_obj)
elif isinstance(json_obj, list):
for item in json_obj:
if isinstance(item, dict):
json_objects.append(item)
except Exception as e:
logger.debug(f"尝试解析不完整的JSON代码块失败: {e}")
except Exception as e:
logger.debug(f"处理不完整的JSON代码块时出错: {e}")
return json_objects, reasoning_content
init_prompt()