MaiBot/src/chat/brain_chat/brain_chat.py

755 lines
33 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import asyncio
import time
import traceback
import random
from typing import List, Optional, Dict, Any, Tuple, TYPE_CHECKING
from rich.traceback import install
from src.config.config import global_config
from src.common.logger import get_logger
from src.common.data_models.info_data_model import ActionPlannerInfo
from src.common.data_models.message_data_model import ReplyContentType
from src.chat.message_receive.chat_stream import ChatStream, get_chat_manager
from src.chat.utils.prompt_builder import global_prompt_manager
from src.chat.utils.timer_calculator import Timer
from src.chat.brain_chat.brain_planner import BrainPlanner
from src.chat.planner_actions.action_modifier import ActionModifier
from src.chat.planner_actions.action_manager import ActionManager
from src.chat.heart_flow.hfc_utils import CycleDetail
from src.bw_learner.expression_learner import expression_learner_manager
from src.bw_learner.message_recorder import extract_and_distribute_messages
from src.person_info.person_info import Person
from src.plugin_system.base.component_types import EventType, ActionInfo
from src.plugin_system.core import events_manager
from src.plugin_system.apis import generator_api, send_api, message_api, database_api
from src.chat.utils.chat_message_builder import (
build_readable_messages_with_id,
get_raw_msg_before_timestamp_with_chat,
)
if TYPE_CHECKING:
from src.common.data_models.database_data_model import DatabaseMessages
from src.common.data_models.message_data_model import ReplySetModel
ERROR_LOOP_INFO = {
"loop_plan_info": {
"action_result": {
"action_type": "error",
"action_data": {},
"reasoning": "循环处理失败",
},
},
"loop_action_info": {
"action_taken": False,
"reply_text": "",
"command": "",
"taken_time": time.time(),
},
}
install(extra_lines=3)
# 注释:原来的动作修改超时常量已移除,因为改为顺序执行
logger = get_logger("bc") # Logger Name Changed
class BrainChatting:
"""
管理一个连续的私聊Brain Chat循环
用于在特定聊天流中生成回复。
"""
def __init__(self, chat_id: str):
"""
BrainChatting 初始化函数
参数:
chat_id: 聊天流唯一标识符(如stream_id)
on_stop_focus_chat: 当收到stop_focus_chat命令时调用的回调函数
performance_version: 性能记录版本号,用于区分不同启动版本
"""
# 基础属性
self.stream_id: str = chat_id # 聊天流ID
self.chat_stream: ChatStream = get_chat_manager().get_stream(self.stream_id) # type: ignore
if not self.chat_stream:
raise ValueError(f"无法找到聊天流: {self.stream_id}")
self.log_prefix = f"[{get_chat_manager().get_stream_name(self.stream_id) or self.stream_id}]"
self.expression_learner = expression_learner_manager.get_expression_learner(self.stream_id)
self.action_manager = ActionManager()
self.action_planner = BrainPlanner(chat_id=self.stream_id, action_manager=self.action_manager)
self.action_modifier = ActionModifier(action_manager=self.action_manager, chat_id=self.stream_id)
# 循环控制内部状态
self.running: bool = False
self._loop_task: Optional[asyncio.Task] = None # 主循环任务
# 添加循环信息管理相关的属性
self.history_loop: List[CycleDetail] = []
self._cycle_counter = 0
self._current_cycle_detail: CycleDetail = None # type: ignore
self.last_read_time = time.time() - 2
self.more_plan = False
# 最近一次是否成功进行了 reply用于选择 BrainPlanner 的 Prompt
self._last_successful_reply: bool = False
async def start(self):
"""检查是否需要启动主循环,如果未激活则启动。"""
# 如果循环已经激活,直接返回
if self.running:
logger.debug(f"{self.log_prefix} BrainChatting 已激活,无需重复启动")
return
try:
# 标记为活动状态,防止重复启动
self.running = True
self._loop_task = asyncio.create_task(self._main_chat_loop())
self._loop_task.add_done_callback(self._handle_loop_completion)
logger.info(f"{self.log_prefix} BrainChatting 启动完成")
except Exception as e:
# 启动失败时重置状态
self.running = False
self._loop_task = None
logger.error(f"{self.log_prefix} BrainChatting 启动失败: {e}")
raise
def _handle_loop_completion(self, task: asyncio.Task):
"""当 _hfc_loop 任务完成时执行的回调。"""
try:
if exception := task.exception():
logger.error(f"{self.log_prefix} BrainChatting: 脱离了聊天(异常): {exception}")
logger.error(traceback.format_exc()) # Log full traceback for exceptions
else:
logger.info(f"{self.log_prefix} BrainChatting: 脱离了聊天 (外部停止)")
except asyncio.CancelledError:
logger.info(f"{self.log_prefix} BrainChatting: 结束了聊天")
def start_cycle(self) -> Tuple[Dict[str, float], str]:
self._cycle_counter += 1
self._current_cycle_detail = CycleDetail(self._cycle_counter)
self._current_cycle_detail.thinking_id = f"tid{str(round(time.time(), 2))}"
cycle_timers = {}
return cycle_timers, self._current_cycle_detail.thinking_id
def end_cycle(self, loop_info, cycle_timers):
self._current_cycle_detail.set_loop_info(loop_info)
self.history_loop.append(self._current_cycle_detail)
self._current_cycle_detail.timers = cycle_timers
self._current_cycle_detail.end_time = time.time()
def print_cycle_info(self, cycle_timers):
# 记录循环信息和计时器结果
timer_strings = []
for name, elapsed in cycle_timers.items():
formatted_time = f"{elapsed * 1000:.2f}毫秒" if elapsed < 1 else f"{elapsed:.2f}"
timer_strings.append(f"{name}: {formatted_time}")
logger.info(
f"{self.log_prefix}{self._current_cycle_detail.cycle_id}次思考,"
f"耗时: {self._current_cycle_detail.end_time - self._current_cycle_detail.start_time:.1f}" # type: ignore
+ (f"\n详情: {'; '.join(timer_strings)}" if timer_strings else "")
)
async def _loopbody(self): # sourcery skip: hoist-if-from-if
# 获取最新消息(用于上下文,但不影响是否调用 observe
recent_messages_list = message_api.get_messages_by_time_in_chat(
chat_id=self.stream_id,
start_time=self.last_read_time,
end_time=time.time(),
limit=20,
limit_mode="latest",
filter_mai=True,
filter_command=False,
filter_intercept_message_level=1,
)
# 如果有新消息,更新 last_read_time
if len(recent_messages_list) >= 1:
self.last_read_time = time.time()
# 总是执行一次思考迭代(不管有没有新消息)
# wait 动作会在其内部等待,不需要在这里处理
should_continue = await self._observe(recent_messages_list=recent_messages_list)
if not should_continue:
# 选择了 complete_talk返回 False 表示需要等待新消息
return False
# 继续下一次迭代(除非选择了 complete_talk
# 短暂等待后再继续,避免过于频繁的循环
await asyncio.sleep(0.1)
return True
async def _send_and_store_reply(
self,
response_set: "ReplySetModel",
action_message: "DatabaseMessages",
cycle_timers: Dict[str, float],
thinking_id,
actions,
selected_expressions: Optional[List[int]] = None,
) -> Tuple[Dict[str, Any], str, Dict[str, float]]:
with Timer("回复发送", cycle_timers):
reply_text = await self._send_response(
reply_set=response_set,
message_data=action_message,
selected_expressions=selected_expressions,
)
# 获取 platform如果不存在则从 chat_stream 获取,如果还是 None 则使用默认值
platform = action_message.chat_info.platform
if platform is None:
platform = getattr(self.chat_stream, "platform", "unknown")
person = Person(platform=platform, user_id=action_message.user_info.user_id)
person_name = person.person_name
action_prompt_display = f"你对{person_name}进行了回复:{reply_text}"
await database_api.store_action_info(
chat_stream=self.chat_stream,
action_build_into_prompt=False,
action_prompt_display=action_prompt_display,
action_done=True,
thinking_id=thinking_id,
action_data={"reply_text": reply_text},
action_name="reply",
)
# 构建循环信息
loop_info: Dict[str, Any] = {
"loop_plan_info": {
"action_result": actions,
},
"loop_action_info": {
"action_taken": True,
"reply_text": reply_text,
"command": "",
"taken_time": time.time(),
},
}
return loop_info, reply_text, cycle_timers
async def _observe(
self, # interest_value: float = 0.0,
recent_messages_list: Optional[List["DatabaseMessages"]] = None,
) -> bool: # sourcery skip: merge-else-if-into-elif, remove-redundant-if
if recent_messages_list is None:
recent_messages_list = []
_reply_text = "" # 初始化reply_text变量避免UnboundLocalError
# -------------------------------------------------------------------------
# ReflectTracker Check
# 在每次回复前检查一次上下文,看是否有反思问题得到了解答
# -------------------------------------------------------------------------
from src.bw_learner.reflect_tracker import reflect_tracker_manager
tracker = reflect_tracker_manager.get_tracker(self.stream_id)
if tracker:
resolved = await tracker.trigger_tracker()
if resolved:
reflect_tracker_manager.remove_tracker(self.stream_id)
logger.info(f"{self.log_prefix} ReflectTracker resolved and removed.")
# -------------------------------------------------------------------------
# Expression Reflection Check
# 检查是否需要提问表达反思
# -------------------------------------------------------------------------
from src.bw_learner.expression_reflector import expression_reflector_manager
reflector = expression_reflector_manager.get_or_create_reflector(self.stream_id)
asyncio.create_task(reflector.check_and_ask())
async with global_prompt_manager.async_message_scope(self.chat_stream.context.get_template_name()):
# 通过 MessageRecorder 统一提取消息并分发给 expression_learner 和 jargon_miner
# 在 replyer 执行时触发,统一管理时间窗口,避免重复获取消息
asyncio.create_task(extract_and_distribute_messages(self.stream_id))
cycle_timers, thinking_id = self.start_cycle()
logger.info(f"{self.log_prefix} 开始第{self._cycle_counter}次思考")
# 第一步:动作检查
available_actions: Dict[str, ActionInfo] = {}
try:
await self.action_modifier.modify_actions()
available_actions = self.action_manager.get_using_actions()
except Exception as e:
logger.error(f"{self.log_prefix} 动作修改失败: {e}")
# 获取必要信息
is_group_chat, chat_target_info, _ = self.action_planner.get_necessary_info()
# 一次思考迭代Think - Act - Observe
# 获取聊天上下文
message_list_before_now = get_raw_msg_before_timestamp_with_chat(
chat_id=self.stream_id,
timestamp=time.time(),
limit=int(global_config.chat.max_context_size * 0.6),
filter_intercept_message_level=1,
)
chat_content_block, message_id_list = build_readable_messages_with_id(
messages=message_list_before_now,
timestamp_mode="normal_no_YMD",
read_mark=self.action_planner.last_obs_time_mark,
truncate=True,
show_actions=True,
)
prompt_info = await self.action_planner.build_planner_prompt(
chat_target_info=chat_target_info,
current_available_actions=available_actions,
chat_content_block=chat_content_block,
message_id_list=message_id_list,
prompt_key="brain_planner_prompt_react",
)
continue_flag, modified_message = await events_manager.handle_mai_events(
EventType.ON_PLAN, None, prompt_info[0], None, self.chat_stream.stream_id
)
if not continue_flag:
return False
if modified_message and modified_message._modify_flags.modify_llm_prompt:
prompt_info = (modified_message.llm_prompt, prompt_info[1])
with Timer("规划器", cycle_timers):
action_to_use_info = await self.action_planner.plan(
loop_start_time=self.last_read_time,
available_actions=available_actions,
)
# 检查是否有 complete_talk 动作(会停止后续迭代)
has_complete_talk = any(
action.action_type == "complete_talk" for action in action_to_use_info
)
# 并行执行所有动作
action_tasks = [
asyncio.create_task(
self._execute_action(action, action_to_use_info, thinking_id, available_actions, cycle_timers)
)
for action in action_to_use_info
]
# 并行执行所有任务
results = await asyncio.gather(*action_tasks, return_exceptions=True)
# 处理执行结果
reply_loop_info = None
reply_text_from_reply = ""
action_success = False
action_reply_text = ""
for result in results:
if isinstance(result, BaseException):
logger.error(f"{self.log_prefix} 动作执行异常: {result}")
continue
if result["action_type"] != "reply":
action_success = result["success"]
action_reply_text = result["reply_text"]
elif result["action_type"] == "reply":
if result["success"]:
reply_loop_info = result["loop_info"]
reply_text_from_reply = result["reply_text"]
else:
logger.warning(f"{self.log_prefix} 回复动作执行失败")
# 更新观察时间标记
self.action_planner.last_obs_time_mark = time.time()
# 如果选择了 complete_talk标记为完成不再继续迭代
if has_complete_talk:
logger.info(f"{self.log_prefix} 检测到 complete_talk 动作,本次思考完成")
# 构建循环信息
if reply_loop_info:
# 如果有回复信息使用回复的loop_info作为基础
loop_info = reply_loop_info
# 更新动作执行信息
loop_info["loop_action_info"].update(
{
"action_taken": action_success,
"taken_time": time.time(),
}
)
_reply_text = reply_text_from_reply
else:
# 没有回复信息构建纯动作的loop_info
loop_info = {
"loop_plan_info": {
"action_result": action_to_use_info,
},
"loop_action_info": {
"action_taken": action_success,
"reply_text": action_reply_text,
"taken_time": time.time(),
},
}
_reply_text = action_reply_text
# 如果选择了 complete_talk返回 False 以停止 _loopbody 的循环
# 否则返回 True让 _loopbody 继续下一次迭代
should_continue = not has_complete_talk
self.end_cycle(loop_info, cycle_timers)
self.print_cycle_info(cycle_timers)
# 如果选择了 complete_talk返回 False 停止循环
# 否则返回 True继续下一次思考迭代
return should_continue
async def _main_chat_loop(self):
"""主循环,持续进行计划并可能回复消息,直到被外部取消。"""
try:
while self.running:
# 主循环
success = await self._loopbody()
if not success:
# 选择了 complete等待新消息
logger.info(f"{self.log_prefix} 选择了 complete等待新消息...")
await self._wait_for_new_message()
# 有新消息后继续循环
continue
await asyncio.sleep(0.1)
except asyncio.CancelledError:
# 设置了关闭标志位后被取消是正常流程
logger.info(f"{self.log_prefix} 麦麦已关闭聊天")
except Exception:
logger.error(f"{self.log_prefix} 麦麦聊天意外错误将于3s后尝试重新启动")
print(traceback.format_exc())
await asyncio.sleep(3)
self._loop_task = asyncio.create_task(self._main_chat_loop())
logger.error(f"{self.log_prefix} 结束了当前聊天循环")
async def _wait_for_new_message(self):
"""等待新消息到达"""
last_check_time = self.last_read_time
check_interval = 1.0 # 每秒检查一次
while self.running:
# 检查是否有新消息
recent_messages_list = message_api.get_messages_by_time_in_chat(
chat_id=self.stream_id,
start_time=last_check_time,
end_time=time.time(),
limit=20,
limit_mode="latest",
filter_mai=True,
filter_command=False,
filter_intercept_message_level=1,
)
# 如果有新消息,更新 last_read_time 并返回
if len(recent_messages_list) >= 1:
self.last_read_time = time.time()
logger.info(f"{self.log_prefix} 检测到新消息,恢复循环")
return
# 等待一段时间后再次检查
await asyncio.sleep(check_interval)
async def _handle_action(
self,
action: str,
reasoning: str,
action_data: dict,
cycle_timers: Dict[str, float],
thinking_id: str,
action_message: Optional["DatabaseMessages"] = None,
) -> tuple[bool, str, str]:
"""
处理规划动作,使用动作工厂创建相应的动作处理器
参数:
action: 动作类型
reasoning: 决策理由
action_data: 动作数据,包含不同动作需要的参数
cycle_timers: 计时器字典
thinking_id: 思考ID
返回:
tuple[bool, str, str]: (是否执行了动作, 思考消息ID, 命令)
"""
try:
# 使用工厂创建动作处理器实例
try:
action_handler = self.action_manager.create_action(
action_name=action,
action_data=action_data,
action_reasoning=reasoning,
cycle_timers=cycle_timers,
thinking_id=thinking_id,
chat_stream=self.chat_stream,
log_prefix=self.log_prefix,
action_message=action_message,
)
except Exception as e:
logger.error(f"{self.log_prefix} 创建动作处理器时出错: {e}")
traceback.print_exc()
return False, "", ""
if not action_handler:
logger.warning(f"{self.log_prefix} 未能创建动作处理器: {action}")
return False, "", ""
# 处理动作并获取结果(固定记录一次动作信息)
# BaseAction 定义了异步方法 execute() 作为统一执行入口
# 这里调用 execute() 以兼容所有 Action 实现
result = await action_handler.execute()
success, action_text = result
command = ""
return success, action_text, command
except Exception as e:
logger.error(f"{self.log_prefix} 处理{action}时出错: {e}")
traceback.print_exc()
return False, "", ""
async def _send_response(
self,
reply_set: "ReplySetModel",
message_data: "DatabaseMessages",
selected_expressions: Optional[List[int]] = None,
) -> str:
new_message_count = message_api.count_new_messages(
chat_id=self.chat_stream.stream_id, start_time=self.last_read_time, end_time=time.time()
)
need_reply = new_message_count >= random.randint(2, 4)
if need_reply:
logger.info(f"{self.log_prefix} 从思考到回复,共有{new_message_count}条新消息,使用引用回复")
reply_text = ""
first_replied = False
for reply_content in reply_set.reply_data:
if reply_content.content_type != ReplyContentType.TEXT:
continue
data: str = reply_content.content # type: ignore
if not first_replied:
await send_api.text_to_stream(
text=data,
stream_id=self.chat_stream.stream_id,
reply_message=message_data,
set_reply=need_reply,
typing=False,
selected_expressions=selected_expressions,
)
first_replied = True
else:
await send_api.text_to_stream(
text=data,
stream_id=self.chat_stream.stream_id,
reply_message=message_data,
set_reply=False,
typing=True,
selected_expressions=selected_expressions,
)
reply_text += data
return reply_text
async def _execute_action(
self,
action_planner_info: ActionPlannerInfo,
chosen_action_plan_infos: List[ActionPlannerInfo],
thinking_id: str,
available_actions: Dict[str, ActionInfo],
cycle_timers: Dict[str, float],
):
"""执行单个动作的通用函数"""
try:
with Timer(f"动作{action_planner_info.action_type}", cycle_timers):
if action_planner_info.action_type == "complete_talk":
# 直接处理complete_talk逻辑不再通过动作系统
reason = action_planner_info.reasoning or "选择完成对话"
logger.info(f"{self.log_prefix} 选择完成对话,原因: {reason}")
# 存储complete_talk信息到数据库
await database_api.store_action_info(
chat_stream=self.chat_stream,
action_build_into_prompt=False,
action_prompt_display=reason,
action_done=True,
thinking_id=thinking_id,
action_data={"reason": reason},
action_name="complete_talk",
)
return {"action_type": "complete_talk", "success": True, "reply_text": "", "command": ""}
elif action_planner_info.action_type == "reply":
try:
success, llm_response = await generator_api.generate_reply(
chat_stream=self.chat_stream,
reply_message=action_planner_info.action_message,
available_actions=available_actions,
chosen_actions=chosen_action_plan_infos,
reply_reason=action_planner_info.reasoning or "",
enable_tool=global_config.tool.enable_tool,
request_type="replyer",
from_plugin=False,
)
if not success or not llm_response or not llm_response.reply_set:
if action_planner_info.action_message:
logger.info(
f"{action_planner_info.action_message.processed_plain_text} 的回复生成失败"
)
else:
logger.info("回复生成失败")
return {
"action_type": "reply",
"success": False,
"reply_text": "",
"loop_info": None,
}
except asyncio.CancelledError:
logger.debug(f"{self.log_prefix} 并行执行:回复生成任务已被取消")
return {"action_type": "reply", "success": False, "reply_text": "", "loop_info": None}
response_set = llm_response.reply_set
selected_expressions = llm_response.selected_expressions
loop_info, reply_text, _ = await self._send_and_store_reply(
response_set=response_set,
action_message=action_planner_info.action_message, # type: ignore
cycle_timers=cycle_timers,
thinking_id=thinking_id,
actions=chosen_action_plan_infos,
selected_expressions=selected_expressions,
)
# 标记这次循环已经成功进行了回复
self._last_successful_reply = True
return {
"action_type": "reply",
"success": True,
"reply_text": reply_text,
"loop_info": loop_info,
}
# 其他动作
else:
# 内建 wait / listening不通过插件系统直接在这里处理
if action_planner_info.action_type in ["wait", "listening"]:
reason = action_planner_info.reasoning or ""
action_data = action_planner_info.action_data or {}
if action_planner_info.action_type == "wait":
# 获取等待时间(必填)
wait_seconds = action_data.get("wait_seconds")
if wait_seconds is None:
logger.warning(f"{self.log_prefix} wait 动作缺少 wait_seconds 参数,使用默认值 5 秒")
wait_seconds = 5
else:
try:
wait_seconds = float(wait_seconds)
if wait_seconds < 0:
logger.warning(f"{self.log_prefix} wait_seconds 不能为负数,使用默认值 5 秒")
wait_seconds = 5
except (ValueError, TypeError):
logger.warning(f"{self.log_prefix} wait_seconds 参数格式错误,使用默认值 5 秒")
wait_seconds = 5
logger.info(f"{self.log_prefix} 执行 wait 动作,等待 {wait_seconds}")
# 记录动作信息
await database_api.store_action_info(
chat_stream=self.chat_stream,
action_build_into_prompt=False,
action_prompt_display=reason or f"等待 {wait_seconds}",
action_done=True,
thinking_id=thinking_id,
action_data={"reason": reason, "wait_seconds": wait_seconds},
action_name="wait",
)
# 等待指定时间
await asyncio.sleep(wait_seconds)
logger.info(f"{self.log_prefix} wait 动作完成,继续下一次思考")
# 这些动作本身不产生文本回复
self._last_successful_reply = False
return {
"action_type": "wait",
"success": True,
"reply_text": "",
"command": "",
}
# listening 已合并到 wait如果遇到则转换为 wait向后兼容
elif action_planner_info.action_type == "listening":
logger.debug(f"{self.log_prefix} 检测到 listening 动作,已合并到 wait自动转换")
# 使用默认等待时间
wait_seconds = 3
logger.info(f"{self.log_prefix} 执行 listening转换为 wait动作等待 {wait_seconds}")
# 记录动作信息
await database_api.store_action_info(
chat_stream=self.chat_stream,
action_build_into_prompt=False,
action_prompt_display=reason or f"倾听并等待 {wait_seconds}",
action_done=True,
thinking_id=thinking_id,
action_data={"reason": reason, "wait_seconds": wait_seconds},
action_name="listening",
)
# 等待指定时间
await asyncio.sleep(wait_seconds)
logger.info(f"{self.log_prefix} listening 动作完成,继续下一次思考")
# 这些动作本身不产生文本回复
self._last_successful_reply = False
return {
"action_type": "listening",
"success": True,
"reply_text": "",
"command": "",
}
# 其余动作:走原有插件 Action 体系
with Timer("动作执行", cycle_timers):
success, reply_text, command = await self._handle_action(
action_planner_info.action_type,
action_planner_info.reasoning or "",
action_planner_info.action_data or {},
cycle_timers,
thinking_id,
action_planner_info.action_message,
)
# 非 reply 类动作执行成功时,清空最近成功回复标记,让下一轮回到 initial Prompt
if success and action_planner_info.action_type != "reply":
self._last_successful_reply = False
return {
"action_type": action_planner_info.action_type,
"success": success,
"reply_text": reply_text,
"command": command,
}
except Exception as e:
logger.error(f"{self.log_prefix} 执行动作时出错: {e}")
logger.error(f"{self.log_prefix} 错误信息: {traceback.format_exc()}")
return {
"action_type": action_planner_info.action_type,
"success": False,
"reply_text": "",
"loop_info": None,
"error": str(e),
}