MaiBot/src/chat/utils/chat_history_summarizer.py

451 lines
18 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

"""
聊天内容概括器
用于累积、打包和压缩聊天记录
"""
import asyncio
import json
import time
from typing import List, Optional, Set
from dataclasses import dataclass
from src.common.logger import get_logger
from src.common.data_models.database_data_model import DatabaseMessages
from src.config.config import global_config, model_config
from src.llm_models.utils_model import LLMRequest
from src.plugin_system.apis import message_api
from src.chat.utils.chat_message_builder import build_readable_messages
from src.person_info.person_info import Person
from src.chat.message_receive.chat_stream import get_chat_manager
logger = get_logger("chat_history_summarizer")
@dataclass
class MessageBatch:
"""消息批次"""
messages: List[DatabaseMessages]
start_time: float
end_time: float
is_preparing: bool = False # 是否处于准备结束模式
class ChatHistorySummarizer:
"""聊天内容概括器"""
def __init__(self, chat_id: str, check_interval: int = 60):
"""
初始化聊天内容概括器
Args:
chat_id: 聊天ID
check_interval: 定期检查间隔默认60秒
"""
self.chat_id = chat_id
self._chat_display_name = self._get_chat_display_name()
self.log_prefix = f"[{self._chat_display_name}]"
# 记录时间点,用于计算新消息
self.last_check_time = time.time()
# 当前累积的消息批次
self.current_batch: Optional[MessageBatch] = None
# LLM请求器用于压缩聊天内容
self.summarizer_llm = LLMRequest(
model_set=model_config.model_task_config.utils,
request_type="chat_history_summarizer"
)
# 后台循环相关
self.check_interval = check_interval # 检查间隔(秒)
self._periodic_task: Optional[asyncio.Task] = None
self._running = False
def _get_chat_display_name(self) -> str:
"""获取聊天显示名称"""
try:
chat_name = get_chat_manager().get_stream_name(self.chat_id)
if chat_name:
return chat_name
# 如果获取失败使用简化的chat_id显示
if len(self.chat_id) > 20:
return f"{self.chat_id[:8]}..."
return self.chat_id
except Exception:
# 如果获取失败使用简化的chat_id显示
if len(self.chat_id) > 20:
return f"{self.chat_id[:8]}..."
return self.chat_id
async def process(self, current_time: Optional[float] = None):
"""
处理聊天内容概括
Args:
current_time: 当前时间戳如果为None则使用time.time()
"""
if current_time is None:
current_time = time.time()
try:
logger.info(
f"{self.log_prefix} 开始处理聊天概括,时间窗口: {self.last_check_time:.2f} -> {current_time:.2f}"
)
# 获取从上次检查时间到当前时间的新消息
new_messages = message_api.get_messages_by_time_in_chat(
chat_id=self.chat_id,
start_time=self.last_check_time,
end_time=current_time,
limit=0,
limit_mode="latest",
filter_mai=False, # 不过滤bot消息因为需要检查bot是否发言
filter_command=False,
)
if not new_messages:
# 没有新消息,检查是否需要打包
logger.info(f"{self.log_prefix} 无新增消息,尝试对现有批次执行打包检查")
if self.current_batch and self.current_batch.messages:
await self._check_and_package(current_time)
self.last_check_time = current_time
return
# 有新消息,更新最后检查时间
self.last_check_time = current_time
logger.info(
f"{self.log_prefix} 获取到 {len(new_messages)} 条新消息,最新消息时间戳: {new_messages[-1].time if new_messages else 'N/A'}"
)
# 如果有当前批次,添加新消息
if self.current_batch:
before_count = len(self.current_batch.messages)
self.current_batch.messages.extend(new_messages)
self.current_batch.end_time = current_time
logger.info(
f"{self.log_prefix} 扩展现有批次: {before_count} -> {len(self.current_batch.messages)} 条消息,时间范围: {self.current_batch.start_time:.2f} - {self.current_batch.end_time:.2f}"
)
else:
# 创建新批次
self.current_batch = MessageBatch(
messages=new_messages,
start_time=new_messages[0].time if new_messages else current_time,
end_time=current_time,
)
logger.info(
f"{self.log_prefix} 创建新批次: 消息数 {len(new_messages)},时间范围: {self.current_batch.start_time:.2f} - {self.current_batch.end_time:.2f}"
)
# 检查是否需要打包
await self._check_and_package(current_time)
except Exception as e:
logger.error(f"{self.log_prefix} 处理聊天内容概括时出错: {e}")
import traceback
traceback.print_exc()
async def _check_and_package(self, current_time: float):
"""检查是否需要打包"""
if not self.current_batch or not self.current_batch.messages:
return
messages = self.current_batch.messages
message_count = len(messages)
last_message_time = messages[-1].time if messages else current_time
time_since_last_message = current_time - last_message_time
# 格式化时间差显示
if time_since_last_message < 60:
time_str = f"{time_since_last_message:.1f}"
elif time_since_last_message < 3600:
time_str = f"{time_since_last_message/60:.1f}分钟"
else:
time_str = f"{time_since_last_message/3600:.1f}小时"
preparing_status = "" if self.current_batch.is_preparing else ""
logger.info(
f"{self.log_prefix} 批次状态检查 | 消息数: {message_count} | 距最后消息: {time_str} | 准备结束模式: {preparing_status}"
)
# 检查打包条件
should_package = False
# 条件1: 消息长度超过120直接打包
if message_count >= 120:
should_package = True
logger.info(f"{self.log_prefix} 触发打包条件: 消息数量达到 {message_count} 条(阈值: 120条")
# 条件2: 最后一条消息的时间和当前时间差>600秒直接打包
elif time_since_last_message > 600:
should_package = True
logger.info(f"{self.log_prefix} 触发打包条件: 距最后消息 {time_str}(阈值: 10分钟")
# 条件3: 消息长度超过100进入准备结束模式
elif message_count > 100:
if not self.current_batch.is_preparing:
self.current_batch.is_preparing = True
logger.info(f"{self.log_prefix} 消息数量 {message_count} 条超过阈值100条进入准备结束模式")
# 在准备结束模式下,如果最后一条消息的时间和当前时间差>10秒就打包
if time_since_last_message > 10:
should_package = True
logger.info(f"{self.log_prefix} 触发打包条件: 准备结束模式下,距最后消息 {time_str}(阈值: 10秒")
if should_package:
await self._package_and_store()
async def _package_and_store(self):
"""打包并存储聊天记录"""
if not self.current_batch or not self.current_batch.messages:
return
messages = self.current_batch.messages
start_time = self.current_batch.start_time
end_time = self.current_batch.end_time
logger.info(
f"{self.log_prefix} 开始打包批次 | 消息数: {len(messages)} | 时间范围: {start_time:.2f} - {end_time:.2f}"
)
# 检查是否有bot发言
# 第一条消息前推600s到最后一条消息的时间内
check_start_time = max(start_time - 600, 0)
check_end_time = end_time
# 使用包含边界的时间范围查询
bot_messages = message_api.get_messages_by_time_in_chat_inclusive(
chat_id=self.chat_id,
start_time=check_start_time,
end_time=check_end_time,
limit=0,
limit_mode="latest",
filter_mai=False,
filter_command=False,
)
# 检查是否有bot的发言
has_bot_message = False
bot_user_id = str(global_config.bot.qq_account)
for msg in bot_messages:
if msg.user_info.user_id == bot_user_id:
has_bot_message = True
break
if not has_bot_message:
logger.info(
f"{self.log_prefix} 批次内无Bot发言丢弃批次 | 检查时间范围: {check_start_time:.2f} - {check_end_time:.2f}"
)
self.current_batch = None
return
# 有bot发言进行压缩和存储
try:
# 构建对话原文
original_text = build_readable_messages(
messages=messages,
replace_bot_name=True,
timestamp_mode="normal_no_YMD",
read_mark=0.0,
truncate=False,
show_actions=False,
)
# 获取参与的所有人的昵称
participants_set: Set[str] = set()
for msg in messages:
# 使用 msg.user_platform扁平化字段或 msg.user_info.platform
platform = getattr(msg, 'user_platform', None) or (msg.user_info.platform if msg.user_info else None) or msg.chat_info.platform
person = Person(
platform=platform,
user_id=msg.user_info.user_id
)
person_name = person.person_name
if person_name:
participants_set.add(person_name)
participants = list(participants_set)
logger.info(
f"{self.log_prefix} 批次参与者: {', '.join(participants) if participants else '未知'}"
)
# 使用LLM压缩聊天内容
theme, keywords, summary = await self._compress_with_llm(original_text)
logger.info(
f"{self.log_prefix} LLM压缩完成 | 主题: {theme} | 关键词数: {len(keywords)} | 概括长度: {len(summary)}"
)
# 存储到数据库
await self._store_to_database(
start_time=start_time,
end_time=end_time,
original_text=original_text,
participants=participants,
theme=theme,
keywords=keywords,
summary=summary,
)
logger.info(f"{self.log_prefix} 成功打包并存储聊天记录 | 消息数: {len(messages)} | 主题: {theme}")
# 清空当前批次
self.current_batch = None
except Exception as e:
logger.error(f"{self.log_prefix} 打包和存储聊天记录时出错: {e}")
import traceback
traceback.print_exc()
# 出错时也清空批次,避免重复处理
self.current_batch = None
async def _compress_with_llm(self, original_text: str) -> tuple[str, List[str], str]:
"""
使用LLM压缩聊天内容
Returns:
tuple[str, List[str], str]: (主题, 关键词列表, 概括)
"""
prompt = f"""请对以下聊天记录进行概括,提取以下信息:
1. 主题这段对话的主要内容一个简短的标题不超过20字
2. 关键词这段对话的关键词用列表形式返回3-10个关键词
3. 概括对这段话的平文本概括50-200字
请以JSON格式返回格式如下
{{
"theme": "主题",
"keywords": ["关键词1", "关键词2", ...],
"summary": "概括内容"
}}
聊天记录:
{original_text}
请直接返回JSON不要包含其他内容。"""
try:
response, _ = await self.summarizer_llm.generate_response_async(
prompt=prompt,
temperature=0.3,
max_tokens=500,
)
# 解析JSON响应
# 尝试提取JSON部分
import re
json_match = re.search(r'\{[^{}]*"theme"[^{}]*\}', response, re.DOTALL)
if json_match:
json_str = json_match.group(0)
else:
json_str = response.strip()
# 移除可能的markdown代码块标记
json_str = re.sub(r'```json\s*', '', json_str)
json_str = re.sub(r'```\s*', '', json_str)
json_str = json_str.strip()
result = json.loads(json_str)
theme = result.get("theme", "未命名对话")
keywords = result.get("keywords", [])
summary = result.get("summary", "无概括")
# 确保keywords是列表
if isinstance(keywords, str):
keywords = [keywords]
return theme, keywords, summary
except Exception as e:
logger.error(f"{self.log_prefix} LLM压缩聊天内容时出错: {e}")
logger.error(f"{self.log_prefix} LLM响应: {response if 'response' in locals() else 'N/A'}")
# 返回默认值
return "未命名对话", [], "压缩失败,无法生成概括"
async def _store_to_database(
self,
start_time: float,
end_time: float,
original_text: str,
participants: List[str],
theme: str,
keywords: List[str],
summary: str,
):
"""存储到数据库"""
try:
from src.common.database.database_model import ChatHistory
from src.plugin_system.apis import database_api
# 准备数据
data = {
"chat_id": self.chat_id,
"start_time": start_time,
"end_time": end_time,
"original_text": original_text,
"participants": json.dumps(participants, ensure_ascii=False),
"theme": theme,
"keywords": json.dumps(keywords, ensure_ascii=False),
"summary": summary,
}
# 使用db_save存储使用start_time和chat_id作为唯一标识
# 由于可能有多条记录我们使用组合键但peewee不支持所以使用start_time作为唯一标识
# 但为了避免冲突我们使用组合键chat_id + start_time
# 由于peewee不支持组合键我们直接创建新记录不提供key_field和key_value
saved_record = await database_api.db_save(
ChatHistory,
data=data,
)
if saved_record:
logger.debug(f"{self.log_prefix} 成功存储聊天历史记录到数据库")
else:
logger.warning(f"{self.log_prefix} 存储聊天历史记录到数据库失败")
except Exception as e:
logger.error(f"{self.log_prefix} 存储到数据库时出错: {e}")
import traceback
traceback.print_exc()
raise
async def start(self):
"""启动后台定期检查循环"""
if self._running:
logger.warning(f"{self.log_prefix} 后台循环已在运行,无需重复启动")
return
self._running = True
self._periodic_task = asyncio.create_task(self._periodic_check_loop())
logger.info(f"{self.log_prefix} 已启动后台定期检查循环 | 检查间隔: {self.check_interval}")
async def stop(self):
"""停止后台定期检查循环"""
self._running = False
if self._periodic_task:
self._periodic_task.cancel()
try:
await self._periodic_task
except asyncio.CancelledError:
pass
self._periodic_task = None
logger.info(f"{self.log_prefix} 已停止后台定期检查循环")
async def _periodic_check_loop(self):
"""后台定期检查循环"""
try:
while self._running:
# 执行一次检查
await self.process()
# 等待指定间隔后再次检查
await asyncio.sleep(self.check_interval)
except asyncio.CancelledError:
logger.info(f"{self.log_prefix} 后台检查循环被取消")
raise
except Exception as e:
logger.error(f"{self.log_prefix} 后台检查循环出错: {e}")
import traceback
traceback.print_exc()
self._running = False