mirror of https://github.com/Mai-with-u/MaiBot.git
462 lines
18 KiB
Python
462 lines
18 KiB
Python
raise DeprecationWarning("Genimi Client is not fully available yet. Please remove your Gemini API Provider")
|
||
import asyncio
|
||
import io
|
||
from collections.abc import Iterable
|
||
from typing import Callable, Iterator, TypeVar, AsyncIterator, Optional, Coroutine, Any
|
||
|
||
from google import genai
|
||
from google.genai import types
|
||
from google.genai.types import FunctionDeclaration, GenerateContentResponse
|
||
from google.genai.errors import (
|
||
ClientError,
|
||
ServerError,
|
||
UnknownFunctionCallArgumentError,
|
||
UnsupportedFunctionError,
|
||
FunctionInvocationError,
|
||
)
|
||
|
||
from src.config.api_ada_configs import ModelInfo, APIProvider
|
||
|
||
from .base_client import APIResponse, UsageRecord, BaseClient
|
||
from ..exceptions import (
|
||
RespParseException,
|
||
NetworkConnectionError,
|
||
RespNotOkException,
|
||
ReqAbortException,
|
||
)
|
||
from ..payload_content.message import Message, RoleType
|
||
from ..payload_content.resp_format import RespFormat, RespFormatType
|
||
from ..payload_content.tool_option import ToolOption, ToolParam, ToolCall
|
||
|
||
T = TypeVar("T")
|
||
|
||
|
||
def _convert_messages(
|
||
messages: list[Message],
|
||
) -> tuple[list[types.Content], list[str] | None]:
|
||
"""
|
||
转换消息格式 - 将消息转换为Gemini API所需的格式
|
||
:param messages: 消息列表
|
||
:return: 转换后的消息列表(和可能存在的system消息)
|
||
"""
|
||
|
||
def _convert_message_item(message: Message) -> types.Content:
|
||
"""
|
||
转换单个消息格式,除了system和tool类型的消息
|
||
:param message: 消息对象
|
||
:return: 转换后的消息字典
|
||
"""
|
||
|
||
# 将openai格式的角色重命名为gemini格式的角色
|
||
if message.role == RoleType.Assistant:
|
||
role = "model"
|
||
elif message.role == RoleType.User:
|
||
role = "user"
|
||
|
||
# 添加Content
|
||
content: types.Part | list
|
||
if isinstance(message.content, str):
|
||
content = types.Part.from_text(message.content)
|
||
elif isinstance(message.content, list):
|
||
content = []
|
||
for item in message.content:
|
||
if isinstance(item, tuple):
|
||
content.append(types.Part.from_bytes(data=item[1], mime_type=f"image/{item[0].lower()}"))
|
||
elif isinstance(item, str):
|
||
content.append(types.Part.from_text(item))
|
||
else:
|
||
raise RuntimeError("无法触及的代码:请使用MessageBuilder类构建消息对象")
|
||
|
||
return types.Content(role=role, content=content)
|
||
|
||
temp_list: list[types.Content] = []
|
||
system_instructions: list[str] = []
|
||
for message in messages:
|
||
if message.role == RoleType.System:
|
||
if isinstance(message.content, str):
|
||
system_instructions.append(message.content)
|
||
else:
|
||
raise RuntimeError("你tm怎么往system里面塞图片base64?")
|
||
elif message.role == RoleType.Tool:
|
||
if not message.tool_call_id:
|
||
raise ValueError("无法触及的代码:请使用MessageBuilder类构建消息对象")
|
||
else:
|
||
temp_list.append(_convert_message_item(message))
|
||
if system_instructions:
|
||
# 如果有system消息,就把它加上去
|
||
ret: tuple = (temp_list, system_instructions)
|
||
else:
|
||
# 如果没有system消息,就直接返回
|
||
ret: tuple = (temp_list, None)
|
||
|
||
return ret
|
||
|
||
|
||
def _convert_tool_options(tool_options: list[ToolOption]) -> list[FunctionDeclaration]:
|
||
"""
|
||
转换工具选项格式 - 将工具选项转换为Gemini API所需的格式
|
||
:param tool_options: 工具选项列表
|
||
:return: 转换后的工具对象列表
|
||
"""
|
||
|
||
def _convert_tool_param(tool_option_param: ToolParam) -> dict:
|
||
"""
|
||
转换单个工具参数格式
|
||
:param tool_option_param: 工具参数对象
|
||
:return: 转换后的工具参数字典
|
||
"""
|
||
return {
|
||
"type": tool_option_param.param_type.value,
|
||
"description": tool_option_param.description,
|
||
}
|
||
|
||
def _convert_tool_option_item(tool_option: ToolOption) -> FunctionDeclaration:
|
||
"""
|
||
转换单个工具项格式
|
||
:param tool_option: 工具选项对象
|
||
:return: 转换后的Gemini工具选项对象
|
||
"""
|
||
ret: dict[str, Any] = {
|
||
"name": tool_option.name,
|
||
"description": tool_option.description,
|
||
}
|
||
if tool_option.params:
|
||
ret["parameters"] = {
|
||
"type": "object",
|
||
"properties": {param.name: _convert_tool_param(param) for param in tool_option.params},
|
||
"required": [param.name for param in tool_option.params if param.required],
|
||
}
|
||
ret1 = types.FunctionDeclaration(**ret)
|
||
return ret1
|
||
|
||
return [_convert_tool_option_item(tool_option) for tool_option in tool_options]
|
||
|
||
|
||
def _process_delta(
|
||
delta: GenerateContentResponse,
|
||
fc_delta_buffer: io.StringIO,
|
||
tool_calls_buffer: list[tuple[str, str, dict]],
|
||
):
|
||
if not hasattr(delta, "candidates") or len(delta.candidates) == 0:
|
||
raise RespParseException(delta, "响应解析失败,缺失candidates字段")
|
||
|
||
if delta.text:
|
||
fc_delta_buffer.write(delta.text)
|
||
|
||
if delta.function_calls: # 为什么不用hasattr呢,是因为这个属性一定有,即使是个空的
|
||
for call in delta.function_calls:
|
||
try:
|
||
if not isinstance(call.args, dict): # gemini返回的function call参数就是dict格式的了
|
||
raise RespParseException(delta, "响应解析失败,工具调用参数无法解析为字典类型")
|
||
tool_calls_buffer.append(
|
||
(
|
||
call.id,
|
||
call.name,
|
||
call.args,
|
||
)
|
||
)
|
||
except Exception as e:
|
||
raise RespParseException(delta, "响应解析失败,无法解析工具调用参数") from e
|
||
|
||
|
||
def _build_stream_api_resp(
|
||
_fc_delta_buffer: io.StringIO,
|
||
_tool_calls_buffer: list[tuple[str, str, dict]],
|
||
) -> APIResponse:
|
||
# sourcery skip: simplify-len-comparison, use-assigned-variable
|
||
resp = APIResponse()
|
||
|
||
if _fc_delta_buffer.tell() > 0:
|
||
# 如果正式内容缓冲区不为空,则将其写入APIResponse对象
|
||
resp.content = _fc_delta_buffer.getvalue()
|
||
_fc_delta_buffer.close()
|
||
if len(_tool_calls_buffer) > 0:
|
||
# 如果工具调用缓冲区不为空,则将其解析为ToolCall对象列表
|
||
resp.tool_calls = []
|
||
for call_id, function_name, arguments_buffer in _tool_calls_buffer:
|
||
if arguments_buffer is not None:
|
||
arguments = arguments_buffer
|
||
if not isinstance(arguments, dict):
|
||
raise RespParseException(
|
||
None,
|
||
f"响应解析失败,工具调用参数无法解析为字典类型。工具调用参数原始响应:\n{arguments_buffer}",
|
||
)
|
||
else:
|
||
arguments = None
|
||
|
||
resp.tool_calls.append(ToolCall(call_id, function_name, arguments))
|
||
|
||
return resp
|
||
|
||
|
||
async def _to_async_iterable(iterable: Iterable[T]) -> AsyncIterator[T]:
|
||
"""
|
||
将迭代器转换为异步迭代器
|
||
:param iterable: 迭代器对象
|
||
:return: 异步迭代器对象
|
||
"""
|
||
for item in iterable:
|
||
await asyncio.sleep(0)
|
||
yield item
|
||
|
||
|
||
async def _default_stream_response_handler(
|
||
resp_stream: Iterator[GenerateContentResponse],
|
||
interrupt_flag: asyncio.Event | None,
|
||
) -> tuple[APIResponse, Optional[tuple[int, int, int]]]:
|
||
"""
|
||
流式响应处理函数 - 处理Gemini API的流式响应
|
||
:param resp_stream: 流式响应对象,是一个神秘的iterator,我完全不知道这个玩意能不能跑,不过遍历一遍之后它就空了,如果跑不了一点的话可以考虑改成别的东西
|
||
:return: APIResponse对象
|
||
"""
|
||
_fc_delta_buffer = io.StringIO() # 正式内容缓冲区,用于存储接收到的正式内容
|
||
_tool_calls_buffer: list[tuple[str, str, dict]] = [] # 工具调用缓冲区,用于存储接收到的工具调用
|
||
_usage_record = None # 使用情况记录
|
||
|
||
def _insure_buffer_closed():
|
||
if _fc_delta_buffer and not _fc_delta_buffer.closed:
|
||
_fc_delta_buffer.close()
|
||
|
||
async for chunk in _to_async_iterable(resp_stream):
|
||
# 检查是否有中断量
|
||
if interrupt_flag and interrupt_flag.is_set():
|
||
# 如果中断量被设置,则抛出ReqAbortException
|
||
raise ReqAbortException("请求被外部信号中断")
|
||
|
||
_process_delta(
|
||
chunk,
|
||
_fc_delta_buffer,
|
||
_tool_calls_buffer,
|
||
)
|
||
|
||
if chunk.usage_metadata:
|
||
# 如果有使用情况,则将其存储在APIResponse对象中
|
||
_usage_record = (
|
||
chunk.usage_metadata.prompt_token_count,
|
||
chunk.usage_metadata.candidates_token_count + chunk.usage_metadata.thoughts_token_count,
|
||
chunk.usage_metadata.total_token_count,
|
||
)
|
||
try:
|
||
return _build_stream_api_resp(
|
||
_fc_delta_buffer,
|
||
_tool_calls_buffer,
|
||
), _usage_record
|
||
except Exception:
|
||
# 确保缓冲区被关闭
|
||
_insure_buffer_closed()
|
||
raise
|
||
|
||
|
||
def _default_normal_response_parser(
|
||
resp: GenerateContentResponse,
|
||
) -> tuple[APIResponse, Optional[tuple[int, int, int]]]:
|
||
"""
|
||
解析对话补全响应 - 将Gemini API响应解析为APIResponse对象
|
||
:param resp: 响应对象
|
||
:return: APIResponse对象
|
||
"""
|
||
api_response = APIResponse()
|
||
|
||
if not hasattr(resp, "candidates") or len(resp.candidates) == 0:
|
||
raise RespParseException(resp, "响应解析失败,缺失candidates字段")
|
||
|
||
if resp.text:
|
||
api_response.content = resp.text
|
||
|
||
if resp.function_calls:
|
||
api_response.tool_calls = []
|
||
for call in resp.function_calls:
|
||
try:
|
||
if not isinstance(call.args, dict):
|
||
raise RespParseException(resp, "响应解析失败,工具调用参数无法解析为字典类型")
|
||
api_response.tool_calls.append(ToolCall(call.id, call.name, call.args))
|
||
except Exception as e:
|
||
raise RespParseException(resp, "响应解析失败,无法解析工具调用参数") from e
|
||
|
||
if resp.usage_metadata:
|
||
_usage_record = (
|
||
resp.usage_metadata.prompt_token_count,
|
||
resp.usage_metadata.candidates_token_count + resp.usage_metadata.thoughts_token_count,
|
||
resp.usage_metadata.total_token_count,
|
||
)
|
||
else:
|
||
_usage_record = None
|
||
|
||
api_response.raw_data = resp
|
||
|
||
return api_response, _usage_record
|
||
|
||
|
||
class GeminiClient(BaseClient):
|
||
client: genai.Client
|
||
|
||
def __init__(self, api_provider: APIProvider):
|
||
super().__init__(api_provider)
|
||
self.client = genai.Client(
|
||
api_key=api_provider.api_key,
|
||
) # 这里和openai不一样,gemini会自己决定自己是否需要retry
|
||
|
||
async def get_response(
|
||
self,
|
||
model_info: ModelInfo,
|
||
message_list: list[Message],
|
||
tool_options: list[ToolOption] | None = None,
|
||
max_tokens: int = 1024,
|
||
temperature: float = 0.7,
|
||
thinking_budget: int = 0,
|
||
response_format: RespFormat | None = None,
|
||
stream_response_handler: Optional[
|
||
Callable[
|
||
[Iterator[GenerateContentResponse], asyncio.Event | None],
|
||
Coroutine[Any, Any, tuple[APIResponse, Optional[tuple[int, int, int]]]],
|
||
]
|
||
] = None,
|
||
async_response_parser: Optional[
|
||
Callable[[GenerateContentResponse], tuple[APIResponse, Optional[tuple[int, int, int]]]]
|
||
] = None,
|
||
interrupt_flag: asyncio.Event | None = None,
|
||
) -> APIResponse:
|
||
"""
|
||
获取对话响应
|
||
:param model_info: 模型信息
|
||
:param message_list: 对话体
|
||
:param tool_options: 工具选项(可选,默认为None)
|
||
:param max_tokens: 最大token数(可选,默认为1024)
|
||
:param temperature: 温度(可选,默认为0.7)
|
||
:param thinking_budget: 思考预算(可选,默认为0)
|
||
:param response_format: 响应格式(默认为text/plain,如果是输入的JSON Schema则必须遵守OpenAPI3.0格式,理论上和openai是一样的,暂不支持其它相应格式输入)
|
||
:param stream_response_handler: 流式响应处理函数(可选,默认为default_stream_response_handler)
|
||
:param async_response_parser: 响应解析函数(可选,默认为default_response_parser)
|
||
:param interrupt_flag: 中断信号量(可选,默认为None)
|
||
:return: (响应文本, 推理文本, 工具调用, 其他数据)
|
||
"""
|
||
if stream_response_handler is None:
|
||
stream_response_handler = _default_stream_response_handler
|
||
|
||
if async_response_parser is None:
|
||
async_response_parser = _default_normal_response_parser
|
||
|
||
# 将messages构造为Gemini API所需的格式
|
||
messages = _convert_messages(message_list)
|
||
# 将tool_options转换为Gemini API所需的格式
|
||
tools = _convert_tool_options(tool_options) if tool_options else None
|
||
# 将response_format转换为Gemini API所需的格式
|
||
generation_config_dict = {
|
||
"max_output_tokens": max_tokens,
|
||
"temperature": temperature,
|
||
"response_modalities": ["TEXT"], # 暂时只支持文本输出
|
||
}
|
||
if "2.5" in model_info.model_identifier.lower():
|
||
# 我偷个懒,在这里识别一下2.5然后开摆,反正现在只有2.5支持思维链,然后我测试之后发现它不返回思考内容,反正我也怕他有朝一日返回了,我决定干掉任何有关的思维内容
|
||
generation_config_dict["thinking_config"] = types.ThinkingConfig(
|
||
thinking_budget=thinking_budget, include_thoughts=False
|
||
)
|
||
if tools:
|
||
generation_config_dict["tools"] = types.Tool(tools)
|
||
if messages[1]:
|
||
# 如果有system消息,则将其添加到配置中
|
||
generation_config_dict["system_instructions"] = messages[1]
|
||
if response_format and response_format.format_type == RespFormatType.TEXT:
|
||
generation_config_dict["response_mime_type"] = "text/plain"
|
||
elif response_format and response_format.format_type in (RespFormatType.JSON_OBJ, RespFormatType.JSON_SCHEMA):
|
||
generation_config_dict["response_mime_type"] = "application/json"
|
||
generation_config_dict["response_schema"] = response_format.to_dict()
|
||
|
||
generation_config = types.GenerateContentConfig(**generation_config_dict)
|
||
|
||
try:
|
||
if model_info.force_stream_mode:
|
||
req_task = asyncio.create_task(
|
||
self.client.aio.models.generate_content_stream(
|
||
model=model_info.model_identifier,
|
||
contents=messages[0],
|
||
config=generation_config,
|
||
)
|
||
)
|
||
while not req_task.done():
|
||
if interrupt_flag and interrupt_flag.is_set():
|
||
# 如果中断量存在且被设置,则取消任务并抛出异常
|
||
req_task.cancel()
|
||
raise ReqAbortException("请求被外部信号中断")
|
||
await asyncio.sleep(0.1) # 等待0.1秒后再次检查任务&中断信号量状态
|
||
resp, usage_record = await stream_response_handler(req_task.result(), interrupt_flag)
|
||
else:
|
||
req_task = asyncio.create_task(
|
||
self.client.aio.models.generate_content(
|
||
model=model_info.model_identifier,
|
||
contents=messages[0],
|
||
config=generation_config,
|
||
)
|
||
)
|
||
while not req_task.done():
|
||
if interrupt_flag and interrupt_flag.is_set():
|
||
# 如果中断量存在且被设置,则取消任务并抛出异常
|
||
req_task.cancel()
|
||
raise ReqAbortException("请求被外部信号中断")
|
||
await asyncio.sleep(0.5) # 等待0.5秒后再次检查任务&中断信号量状态
|
||
|
||
resp, usage_record = async_response_parser(req_task.result())
|
||
except (ClientError, ServerError) as e:
|
||
# 重封装ClientError和ServerError为RespNotOkException
|
||
raise RespNotOkException(e.status_code, e.message) from None
|
||
except (
|
||
UnknownFunctionCallArgumentError,
|
||
UnsupportedFunctionError,
|
||
FunctionInvocationError,
|
||
) as e:
|
||
raise ValueError(f"工具类型错误:请检查工具选项和参数:{str(e)}") from None
|
||
except Exception as e:
|
||
raise NetworkConnectionError() from e
|
||
|
||
if usage_record:
|
||
resp.usage = UsageRecord(
|
||
model_name=model_info.name,
|
||
provider_name=model_info.api_provider,
|
||
prompt_tokens=usage_record[0],
|
||
completion_tokens=usage_record[1],
|
||
total_tokens=usage_record[2],
|
||
)
|
||
|
||
return resp
|
||
|
||
async def get_embedding(
|
||
self,
|
||
model_info: ModelInfo,
|
||
embedding_input: str,
|
||
) -> APIResponse:
|
||
"""
|
||
获取文本嵌入
|
||
:param model_info: 模型信息
|
||
:param embedding_input: 嵌入输入文本
|
||
:return: 嵌入响应
|
||
"""
|
||
try:
|
||
raw_response: types.EmbedContentResponse = await self.client.aio.models.embed_content(
|
||
model=model_info.model_identifier,
|
||
contents=embedding_input,
|
||
config=types.EmbedContentConfig(task_type="SEMANTIC_SIMILARITY"),
|
||
)
|
||
except (ClientError, ServerError) as e:
|
||
# 重封装ClientError和ServerError为RespNotOkException
|
||
raise RespNotOkException(e.status_code) from None
|
||
except Exception as e:
|
||
raise NetworkConnectionError() from e
|
||
|
||
response = APIResponse()
|
||
|
||
# 解析嵌入响应和使用情况
|
||
if hasattr(raw_response, "embeddings"):
|
||
response.embedding = raw_response.embeddings[0].values
|
||
else:
|
||
raise RespParseException(raw_response, "响应解析失败,缺失embeddings字段")
|
||
|
||
response.usage = UsageRecord(
|
||
model_name=model_info.name,
|
||
provider_name=model_info.api_provider,
|
||
prompt_tokens=len(embedding_input),
|
||
completion_tokens=0,
|
||
total_tokens=len(embedding_input),
|
||
)
|
||
|
||
return response
|