mirror of https://github.com/Mai-with-u/MaiBot.git
173 lines
6.7 KiB
Python
173 lines
6.7 KiB
Python
import asyncio
|
||
import re
|
||
import math
|
||
import traceback
|
||
|
||
from typing import Tuple, TYPE_CHECKING
|
||
|
||
from src.config.config import global_config
|
||
from src.chat.memory_system.Hippocampus import hippocampus_manager
|
||
from src.chat.message_receive.message import MessageRecv
|
||
from src.chat.message_receive.storage import MessageStorage
|
||
from src.chat.heart_flow.heartflow import heartflow
|
||
from src.chat.utils.utils import is_mentioned_bot_in_message
|
||
from src.chat.utils.timer_calculator import Timer
|
||
from src.chat.utils.chat_message_builder import replace_user_references_sync
|
||
from src.common.logger import get_logger
|
||
from src.person_info.relationship_manager import get_relationship_manager
|
||
from src.mood.mood_manager import mood_manager
|
||
|
||
if TYPE_CHECKING:
|
||
from src.chat.heart_flow.sub_heartflow import SubHeartflow
|
||
|
||
logger = get_logger("chat")
|
||
|
||
|
||
async def _process_relationship(message: MessageRecv) -> None:
|
||
"""处理用户关系逻辑
|
||
|
||
Args:
|
||
message: 消息对象,包含用户信息
|
||
"""
|
||
platform = message.message_info.platform
|
||
user_id = message.message_info.user_info.user_id # type: ignore
|
||
nickname = message.message_info.user_info.user_nickname # type: ignore
|
||
cardname = message.message_info.user_info.user_cardname or nickname # type: ignore
|
||
|
||
relationship_manager = get_relationship_manager()
|
||
is_known = await relationship_manager.is_known_some_one(platform, user_id)
|
||
|
||
if not is_known:
|
||
logger.info(f"首次认识用户: {nickname}")
|
||
await relationship_manager.first_knowing_some_one(platform, user_id, nickname, cardname) # type: ignore
|
||
|
||
|
||
async def _calculate_interest(message: MessageRecv) -> Tuple[float, bool, list[str]]:
|
||
"""计算消息的兴趣度
|
||
|
||
Args:
|
||
message: 待处理的消息对象
|
||
|
||
Returns:
|
||
Tuple[float, bool, list[str]]: (兴趣度, 是否被提及, 关键词)
|
||
"""
|
||
is_mentioned, _ = is_mentioned_bot_in_message(message)
|
||
interested_rate = 0.0
|
||
|
||
with Timer("记忆激活"):
|
||
interested_rate, keywords = await hippocampus_manager.get_activate_from_text(
|
||
message.processed_plain_text,
|
||
max_depth= 4,
|
||
fast_retrieval=False,
|
||
)
|
||
message.key_words = keywords
|
||
message.key_words_lite = keywords
|
||
logger.debug(f"记忆激活率: {interested_rate:.2f}, 关键词: {keywords}")
|
||
|
||
text_len = len(message.processed_plain_text)
|
||
# 根据文本长度分布调整兴趣度,采用分段函数实现更精确的兴趣度计算
|
||
# 基于实际分布:0-5字符(26.57%), 6-10字符(27.18%), 11-20字符(22.76%), 21-30字符(10.33%), 31+字符(13.86%)
|
||
|
||
if text_len == 0:
|
||
base_interest = 0.01 # 空消息最低兴趣度
|
||
elif text_len <= 5:
|
||
# 1-5字符:线性增长 0.01 -> 0.03
|
||
base_interest = 0.01 + (text_len - 1) * (0.03 - 0.01) / 4
|
||
elif text_len <= 10:
|
||
# 6-10字符:线性增长 0.03 -> 0.06
|
||
base_interest = 0.03 + (text_len - 5) * (0.06 - 0.03) / 5
|
||
elif text_len <= 20:
|
||
# 11-20字符:线性增长 0.06 -> 0.12
|
||
base_interest = 0.06 + (text_len - 10) * (0.12 - 0.06) / 10
|
||
elif text_len <= 30:
|
||
# 21-30字符:线性增长 0.12 -> 0.18
|
||
base_interest = 0.12 + (text_len - 20) * (0.18 - 0.12) / 10
|
||
elif text_len <= 50:
|
||
# 31-50字符:线性增长 0.18 -> 0.22
|
||
base_interest = 0.18 + (text_len - 30) * (0.22 - 0.18) / 20
|
||
elif text_len <= 100:
|
||
# 51-100字符:线性增长 0.22 -> 0.26
|
||
base_interest = 0.22 + (text_len - 50) * (0.26 - 0.22) / 50
|
||
else:
|
||
# 100+字符:对数增长 0.26 -> 0.3,增长率递减
|
||
base_interest = 0.26 + (0.3 - 0.26) * (math.log10(text_len - 99) / math.log10(901)) # 1000-99=901
|
||
|
||
# 确保在范围内
|
||
base_interest = min(max(base_interest, 0.01), 0.3)
|
||
|
||
interested_rate += base_interest
|
||
|
||
if is_mentioned:
|
||
interest_increase_on_mention = 1
|
||
interested_rate += interest_increase_on_mention
|
||
|
||
return interested_rate, is_mentioned, keywords
|
||
|
||
|
||
class HeartFCMessageReceiver:
|
||
"""心流处理器,负责处理接收到的消息并计算兴趣度"""
|
||
|
||
def __init__(self):
|
||
"""初始化心流处理器,创建消息存储实例"""
|
||
self.storage = MessageStorage()
|
||
|
||
async def process_message(self, message: MessageRecv) -> None:
|
||
"""处理接收到的原始消息数据
|
||
|
||
主要流程:
|
||
1. 消息解析与初始化
|
||
2. 消息缓冲处理
|
||
3. 过滤检查
|
||
4. 兴趣度计算
|
||
5. 关系处理
|
||
|
||
Args:
|
||
message_data: 原始消息字符串
|
||
"""
|
||
try:
|
||
# 1. 消息解析与初始化
|
||
userinfo = message.message_info.user_info
|
||
chat = message.chat_stream
|
||
|
||
# 2. 兴趣度计算与更新
|
||
interested_rate, is_mentioned, keywords = await _calculate_interest(message)
|
||
message.interest_value = interested_rate
|
||
message.is_mentioned = is_mentioned
|
||
|
||
await self.storage.store_message(message, chat)
|
||
|
||
subheartflow: SubHeartflow = await heartflow.get_or_create_subheartflow(chat.stream_id) # type: ignore
|
||
|
||
# subheartflow.add_message_to_normal_chat_cache(message, interested_rate, is_mentioned)
|
||
if global_config.mood.enable_mood:
|
||
chat_mood = mood_manager.get_mood_by_chat_id(subheartflow.chat_id)
|
||
asyncio.create_task(chat_mood.update_mood_by_message(message, interested_rate))
|
||
|
||
# 3. 日志记录
|
||
mes_name = chat.group_info.group_name if chat.group_info else "私聊"
|
||
|
||
# 如果消息中包含图片标识,则将 [picid:...] 替换为 [图片]
|
||
picid_pattern = r"\[picid:([^\]]+)\]"
|
||
processed_plain_text = re.sub(picid_pattern, "[图片]", message.processed_plain_text)
|
||
|
||
# 应用用户引用格式替换,将回复<aaa:bbb>和@<aaa:bbb>格式转换为可读格式
|
||
processed_plain_text = replace_user_references_sync(
|
||
processed_plain_text,
|
||
message.message_info.platform, # type: ignore
|
||
replace_bot_name=True
|
||
)
|
||
|
||
if keywords:
|
||
logger.info(f"[{mes_name}]{userinfo.user_nickname}:{processed_plain_text}[兴趣度:{interested_rate:.2f}][关键词:{keywords}]") # type: ignore
|
||
else:
|
||
logger.info(f"[{mes_name}]{userinfo.user_nickname}:{processed_plain_text}[兴趣度:{interested_rate:.2f}]") # type: ignore
|
||
|
||
|
||
# 4. 关系处理
|
||
if global_config.relationship.enable_relationship:
|
||
await _process_relationship(message)
|
||
|
||
except Exception as e:
|
||
logger.error(f"消息处理失败: {e}")
|
||
print(traceback.format_exc())
|