MaiBot/template/model_config_template.toml

197 lines
7.6 KiB
TOML
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

[inner]
version = "1.11.0"
# 配置文件版本号迭代规则同bot_config.toml
[[api_providers]] # API服务提供商可以配置多个
name = "DeepSeek" # API服务商名称可随意命名在models的api-provider中需使用这个命名
base_url = "https://api.deepseek.com/v1" # API服务商的BaseURL
api_key = "your-api-key-here" # API密钥请替换为实际的API密钥
client_type = "openai" # 请求客户端(可选,默认值为"openai"使用gimini等Google系模型时请配置为"gemini"
max_retry = 2 # 最大重试次数单个模型API调用失败最多重试的次数
timeout = 120 # API请求超时时间单位
retry_interval = 10 # 重试间隔时间(单位:秒)
[[api_providers]] # 阿里 百炼 API服务商配置
name = "BaiLian"
base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1"
api_key = "your-bailian-key"
client_type = "openai"
max_retry = 2
timeout = 120
retry_interval = 5
[[api_providers]] # 特殊Google的Gimini使用特殊API与OpenAI格式不兼容需要配置client为"gemini"
name = "Google"
base_url = "https://generativelanguage.googleapis.com/v1beta"
api_key = "your-google-api-key-1"
client_type = "gemini"
max_retry = 2
timeout = 120
retry_interval = 10
[[api_providers]] # SiliconFlow的API服务商配置
name = "SiliconFlow"
base_url = "https://api.siliconflow.cn/v1"
api_key = "your-siliconflow-api-key"
client_type = "openai"
max_retry = 3
timeout = 120
retry_interval = 5
[[models]] # 模型(可以配置多个)
model_identifier = "deepseek-chat" # 模型标识符API服务商提供的模型标识符
name = "deepseek-v3" # 模型名称(可随意命名,在后面中需使用这个命名)
api_provider = "DeepSeek" # API服务商名称对应在api_providers中配置的服务商名称
price_in = 2.0 # 输入价格用于API调用统计单位元/ M token可选若无该字段默认值为0
price_out = 8.0 # 输出价格用于API调用统计单位元/ M token可选若无该字段默认值为0
# force_stream_mode = true # 强制流式输出模式若模型不支持非流式输出请取消该注释启用强制流式输出若无该字段默认值为false
[[models]]
model_identifier = "deepseek-ai/DeepSeek-V3.2-Exp"
name = "siliconflow-deepseek-v3.2"
api_provider = "SiliconFlow"
price_in = 2.0
price_out = 3.0
# temperature = 0.5 # 可选:为该模型单独指定温度,会覆盖任务配置中的温度
# max_tokens = 4096 # 可选为该模型单独指定最大token数会覆盖任务配置中的max_tokens
[models.extra_params] # 可选的额外参数配置
enable_thinking = false # 不启用思考
[[models]]
model_identifier = "deepseek-ai/DeepSeek-V3.2-Exp"
name = "siliconflow-deepseek-v3.2-think"
api_provider = "SiliconFlow"
price_in = 2.0
price_out = 3.0
# temperature = 0.7 # 可选:为该模型单独指定温度,会覆盖任务配置中的温度
# max_tokens = 4096 # 可选为该模型单独指定最大token数会覆盖任务配置中的max_tokens
[models.extra_params] # 可选的额外参数配置
enable_thinking = true # 启用思考
[[models]]
model_identifier = "Qwen/Qwen3-Next-80B-A3B-Instruct"
name = "qwen3-next-80b"
api_provider = "SiliconFlow"
price_in = 1.0
price_out = 4.0
[[models]]
model_identifier = "zai-org/GLM-4.6"
name = "siliconflow-glm-4.6"
api_provider = "SiliconFlow"
price_in = 3.5
price_out = 14.0
[models.extra_params] # 可选的额外参数配置
enable_thinking = false # 不启用思考
[[models]]
model_identifier = "zai-org/GLM-4.6"
name = "siliconflow-glm-4.6-think"
api_provider = "SiliconFlow"
price_in = 3.5
price_out = 14.0
[models.extra_params] # 可选的额外参数配置
enable_thinking = true # 启用思考
[[models]]
model_identifier = "deepseek-ai/DeepSeek-R1"
name = "siliconflow-deepseek-r1"
api_provider = "SiliconFlow"
price_in = 4.0
price_out = 16.0
[[models]]
model_identifier = "Qwen/Qwen3-30B-A3B-Instruct-2507"
name = "qwen3-30b"
api_provider = "SiliconFlow"
price_in = 0.7
price_out = 2.8
[[models]]
model_identifier = "Qwen/Qwen3-VL-30B-A3B-Instruct"
name = "qwen3-vl-30"
api_provider = "SiliconFlow"
price_in = 4.13
price_out = 4.13
[[models]]
model_identifier = "FunAudioLLM/SenseVoiceSmall"
name = "sensevoice-small"
api_provider = "SiliconFlow"
price_in = 0
price_out = 0
[[models]]
model_identifier = "BAAI/bge-m3"
name = "bge-m3"
api_provider = "SiliconFlow"
price_in = 0
price_out = 0
[model_task_config.utils] # 在麦麦的一些组件中使用的模型,例如表情包模块,取名模块,关系模块,麦麦的情绪变化等,是麦麦必须的模型
model_list = ["siliconflow-deepseek-v3.2"] # 使用的模型列表,每个子项对应上面的模型名称(name)
temperature = 0.2 # 模型温度新V3建议0.1-0.3
max_tokens = 4096 # 最大输出token数
slow_threshold = 15.0 # 慢请求阈值(秒),模型等待回复时间超过此值会输出警告日志
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
[model_task_config.tool_use] #功能模型,需要使用支持工具调用的模型,请使用较快的小模型(调用量较大)
model_list = ["qwen3-30b","qwen3-next-80b"]
temperature = 0.7
max_tokens = 1024
slow_threshold = 10.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
[model_task_config.replyer] # 首要回复模型,还用于表达方式学习
model_list = ["siliconflow-deepseek-v3.2","siliconflow-deepseek-v3.2-think","siliconflow-glm-4.6","siliconflow-glm-4.6-think"]
temperature = 0.3 # 模型温度新V3建议0.1-0.3
max_tokens = 2048
slow_threshold = 25.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
[model_task_config.planner] #决策:负责决定麦麦该什么时候回复的模型
model_list = ["siliconflow-deepseek-v3.2"]
temperature = 0.3
max_tokens = 800
slow_threshold = 12.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
[model_task_config.vlm] # 图像识别模型
model_list = ["qwen3-vl-30"]
max_tokens = 256
slow_threshold = 15.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
[model_task_config.voice] # 语音识别模型
model_list = ["sensevoice-small"]
slow_threshold = 12.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
# 嵌入模型
[model_task_config.embedding]
model_list = ["bge-m3"]
slow_threshold = 5.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
# ------------LPMM知识库模型------------
[model_task_config.lpmm_entity_extract] # 实体提取模型
model_list = ["siliconflow-deepseek-v3.2"]
temperature = 0.2
max_tokens = 800
slow_threshold = 20.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择
[model_task_config.lpmm_rdf_build] # RDF构建模型
model_list = ["siliconflow-deepseek-v3.2"]
temperature = 0.2
max_tokens = 800
slow_threshold = 20.0
selection_strategy = "random" # 模型选择策略balance负载均衡或 random随机选择