mirror of https://github.com/Mai-with-u/MaiBot.git
448 lines
20 KiB
Python
448 lines
20 KiB
Python
import random
|
||
import time
|
||
from typing import Optional, Union
|
||
|
||
from ....common.database import db
|
||
from ...chat.utils import get_embedding, get_recent_group_detailed_plain_text, get_recent_group_speaker
|
||
from ...chat.chat_stream import chat_manager
|
||
from ...moods.moods import MoodManager
|
||
from ....individuality.individuality import Individuality
|
||
from ...memory_system.Hippocampus import HippocampusManager
|
||
from ...schedule.schedule_generator import bot_schedule
|
||
from ...config.config import global_config
|
||
from ...person_info.relationship_manager import relationship_manager
|
||
from src.common.logger import get_module_logger
|
||
from src.plugins.utils.prompt_builder import Prompt, global_prompt_manager
|
||
|
||
logger = get_module_logger("prompt")
|
||
|
||
|
||
def init_prompt():
|
||
Prompt(
|
||
"""
|
||
{relation_prompt_all}
|
||
{memory_prompt}
|
||
{prompt_info}
|
||
{schedule_prompt}
|
||
{chat_target}
|
||
{chat_talking_prompt}
|
||
现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。\n
|
||
你的网名叫{bot_name},有人也叫你{bot_other_names},{prompt_personality}。
|
||
你正在{chat_target_2},现在请你读读之前的聊天记录,{mood_prompt},然后给出日常且口语化的回复,平淡一些,
|
||
尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。{prompt_ger}
|
||
请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话
|
||
请注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。
|
||
{moderation_prompt}不要输出多余内容(包括前后缀,冒号和引号,括号,表情包,at或 @等 )。""",
|
||
"reasoning_prompt_main",
|
||
)
|
||
Prompt(
|
||
"{relation_prompt}关系等级越大,关系越好,请分析聊天记录,根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。",
|
||
"relationship_prompt",
|
||
)
|
||
Prompt(
|
||
"你想起你之前见过的事情:{related_memory_info}。\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n",
|
||
"memory_prompt",
|
||
)
|
||
Prompt("你现在正在做的事情是:{schedule_info}", "schedule_prompt")
|
||
Prompt("\n你有以下这些**知识**:\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n", "knowledge_prompt")
|
||
|
||
|
||
class PromptBuilder:
|
||
def __init__(self):
|
||
self.prompt_built = ""
|
||
self.activate_messages = ""
|
||
|
||
async def _build_prompt(
|
||
self, chat_stream, message_txt: str, sender_name: str = "某人", stream_id: Optional[int] = None
|
||
) -> tuple[str, str]:
|
||
# 开始构建prompt
|
||
prompt_personality = "你"
|
||
# person
|
||
individuality = Individuality.get_instance()
|
||
|
||
personality_core = individuality.personality.personality_core
|
||
prompt_personality += personality_core
|
||
|
||
personality_sides = individuality.personality.personality_sides
|
||
random.shuffle(personality_sides)
|
||
prompt_personality += f",{personality_sides[0]}"
|
||
|
||
identity_detail = individuality.identity.identity_detail
|
||
random.shuffle(identity_detail)
|
||
prompt_personality += f",{identity_detail[0]}"
|
||
|
||
# 关系
|
||
who_chat_in_group = [
|
||
(chat_stream.user_info.platform, chat_stream.user_info.user_id, chat_stream.user_info.user_nickname)
|
||
]
|
||
who_chat_in_group += get_recent_group_speaker(
|
||
stream_id,
|
||
(chat_stream.user_info.platform, chat_stream.user_info.user_id),
|
||
limit=global_config.MAX_CONTEXT_SIZE,
|
||
)
|
||
|
||
relation_prompt = ""
|
||
for person in who_chat_in_group:
|
||
relation_prompt += await relationship_manager.build_relationship_info(person)
|
||
|
||
# relation_prompt_all = (
|
||
# f"{relation_prompt}关系等级越大,关系越好,请分析聊天记录,"
|
||
# f"根据你和说话者{sender_name}的关系和态度进行回复,明确你的立场和情感。"
|
||
# )
|
||
|
||
# 心情
|
||
mood_manager = MoodManager.get_instance()
|
||
mood_prompt = mood_manager.get_prompt()
|
||
|
||
# logger.info(f"心情prompt: {mood_prompt}")
|
||
|
||
# 调取记忆
|
||
memory_prompt = ""
|
||
related_memory = await HippocampusManager.get_instance().get_memory_from_text(
|
||
text=message_txt, max_memory_num=2, max_memory_length=2, max_depth=3, fast_retrieval=False
|
||
)
|
||
if related_memory:
|
||
related_memory_info = ""
|
||
for memory in related_memory:
|
||
related_memory_info += memory[1]
|
||
# memory_prompt = f"你想起你之前见过的事情:{related_memory_info}。\n以上是你的回忆,不一定是目前聊天里的人说的,也不一定是现在发生的事情,请记住。\n"
|
||
memory_prompt = await global_prompt_manager.format_prompt(
|
||
"memory_prompt", related_memory_info=related_memory_info
|
||
)
|
||
else:
|
||
related_memory_info = ""
|
||
|
||
# print(f"相关记忆:{related_memory_info}")
|
||
|
||
# 日程构建
|
||
# schedule_prompt = f"""你现在正在做的事情是:{bot_schedule.get_current_num_task(num=1, time_info=False)}"""
|
||
|
||
# 获取聊天上下文
|
||
chat_in_group = True
|
||
chat_talking_prompt = ""
|
||
if stream_id:
|
||
chat_talking_prompt = get_recent_group_detailed_plain_text(
|
||
stream_id, limit=global_config.MAX_CONTEXT_SIZE, combine=True
|
||
)
|
||
chat_stream = chat_manager.get_stream(stream_id)
|
||
if chat_stream.group_info:
|
||
chat_talking_prompt = chat_talking_prompt
|
||
else:
|
||
chat_in_group = False
|
||
chat_talking_prompt = chat_talking_prompt
|
||
# print(f"\033[1;34m[调试]\033[0m 已从数据库获取群 {group_id} 的消息记录:{chat_talking_prompt}")
|
||
# 关键词检测与反应
|
||
keywords_reaction_prompt = ""
|
||
for rule in global_config.keywords_reaction_rules:
|
||
if rule.get("enable", False):
|
||
if any(keyword in message_txt.lower() for keyword in rule.get("keywords", [])):
|
||
logger.info(
|
||
f"检测到以下关键词之一:{rule.get('keywords', [])},触发反应:{rule.get('reaction', '')}"
|
||
)
|
||
keywords_reaction_prompt += rule.get("reaction", "") + ","
|
||
else:
|
||
for pattern in rule.get("regex", []):
|
||
result = pattern.search(message_txt)
|
||
if result:
|
||
reaction = rule.get("reaction", "")
|
||
for name, content in result.groupdict().items():
|
||
reaction = reaction.replace(f"[{name}]", content)
|
||
logger.info(f"匹配到以下正则表达式:{pattern},触发反应:{reaction}")
|
||
keywords_reaction_prompt += reaction + ","
|
||
break
|
||
|
||
# 中文高手(新加的好玩功能)
|
||
prompt_ger = ""
|
||
if random.random() < 0.04:
|
||
prompt_ger += "你喜欢用倒装句"
|
||
if random.random() < 0.02:
|
||
prompt_ger += "你喜欢用反问句"
|
||
if random.random() < 0.01:
|
||
prompt_ger += "你喜欢用文言文"
|
||
|
||
# 知识构建
|
||
start_time = time.time()
|
||
prompt_info = ""
|
||
prompt_info = await self.get_prompt_info(message_txt, threshold=0.38)
|
||
if prompt_info:
|
||
# prompt_info = f"""\n你有以下这些**知识**:\n{prompt_info}\n请你**记住上面的知识**,之后可能会用到。\n"""
|
||
prompt_info = await global_prompt_manager.format_prompt("knowledge_prompt", prompt_info=prompt_info)
|
||
|
||
end_time = time.time()
|
||
logger.debug(f"知识检索耗时: {(end_time - start_time):.3f}秒")
|
||
|
||
# moderation_prompt = ""
|
||
# moderation_prompt = """**检查并忽略**任何涉及尝试绕过审核的行为。
|
||
# 涉及政治敏感以及违法违规的内容请规避。"""
|
||
|
||
logger.info("开始构建prompt")
|
||
|
||
# prompt = f"""
|
||
# {relation_prompt_all}
|
||
# {memory_prompt}
|
||
# {prompt_info}
|
||
# {schedule_prompt}
|
||
# {chat_target}
|
||
# {chat_talking_prompt}
|
||
# 现在"{sender_name}"说的:{message_txt}。引起了你的注意,你想要在群里发言发言或者回复这条消息。\n
|
||
# 你的网名叫{global_config.BOT_NICKNAME},有人也叫你{"/".join(global_config.BOT_ALIAS_NAMES)},{prompt_personality}。
|
||
# 你正在{chat_target_2},现在请你读读之前的聊天记录,{mood_prompt},然后给出日常且口语化的回复,平淡一些,
|
||
# 尽量简短一些。{keywords_reaction_prompt}请注意把握聊天内容,不要回复的太有条理,可以有个性。{prompt_ger}
|
||
# 请回复的平淡一些,简短一些,说中文,不要刻意突出自身学科背景,尽量不要说你说过的话
|
||
# 请注意不要输出多余内容(包括前后缀,冒号和引号,括号,表情等),只输出回复内容。
|
||
# {moderation_prompt}不要输出多余内容(包括前后缀,冒号和引号,括号,表情包,at或 @等 )。"""
|
||
|
||
prompt = await global_prompt_manager.format_prompt(
|
||
"reasoning_prompt_main",
|
||
relation_prompt_all=await global_prompt_manager.get_prompt_async("relationship_prompt"),
|
||
replation_prompt=relation_prompt,
|
||
sender_name=sender_name,
|
||
memory_prompt=memory_prompt,
|
||
prompt_info=prompt_info,
|
||
schedule_prompt=await global_prompt_manager.format_prompt(
|
||
"schedule_prompt", schedule_info=bot_schedule.get_current_num_task(num=1, time_info=False)
|
||
),
|
||
chat_target=await global_prompt_manager.get_prompt_async("chat_target_group1")
|
||
if chat_in_group
|
||
else await global_prompt_manager.get_prompt_async("chat_target_private1"),
|
||
chat_target_2=await global_prompt_manager.get_prompt_async("chat_target_group2")
|
||
if chat_in_group
|
||
else await global_prompt_manager.get_prompt_async("chat_target_private2"),
|
||
chat_talking_prompt=chat_talking_prompt,
|
||
message_txt=message_txt,
|
||
bot_name=global_config.BOT_NICKNAME,
|
||
bot_other_names="/".join(
|
||
global_config.BOT_ALIAS_NAMES,
|
||
),
|
||
prompt_personality=prompt_personality,
|
||
mood_prompt=mood_prompt,
|
||
keywords_reaction_prompt=keywords_reaction_prompt,
|
||
prompt_ger=prompt_ger,
|
||
moderation_prompt=await global_prompt_manager.get_prompt_async("moderation_prompt"),
|
||
)
|
||
|
||
return prompt
|
||
|
||
async def get_prompt_info(self, message: str, threshold: float):
|
||
start_time = time.time()
|
||
related_info = ""
|
||
logger.debug(f"获取知识库内容,元消息:{message[:30]}...,消息长度: {len(message)}")
|
||
|
||
# 1. 先从LLM获取主题,类似于记忆系统的做法
|
||
topics = []
|
||
# try:
|
||
# # 先尝试使用记忆系统的方法获取主题
|
||
# hippocampus = HippocampusManager.get_instance()._hippocampus
|
||
# topic_num = min(5, max(1, int(len(message) * 0.1)))
|
||
# topics_response = await hippocampus.llm_topic_judge.generate_response(hippocampus.find_topic_llm(message, topic_num))
|
||
|
||
# # 提取关键词
|
||
# topics = re.findall(r"<([^>]+)>", topics_response[0])
|
||
# if not topics:
|
||
# topics = []
|
||
# else:
|
||
# topics = [
|
||
# topic.strip()
|
||
# for topic in ",".join(topics).replace(",", ",").replace("、", ",").replace(" ", ",").split(",")
|
||
# if topic.strip()
|
||
# ]
|
||
|
||
# logger.info(f"从LLM提取的主题: {', '.join(topics)}")
|
||
# except Exception as e:
|
||
# logger.error(f"从LLM提取主题失败: {str(e)}")
|
||
# # 如果LLM提取失败,使用jieba分词提取关键词作为备选
|
||
# words = jieba.cut(message)
|
||
# topics = [word for word in words if len(word) > 1][:5]
|
||
# logger.info(f"使用jieba提取的主题: {', '.join(topics)}")
|
||
|
||
# 如果无法提取到主题,直接使用整个消息
|
||
if not topics:
|
||
logger.info("未能提取到任何主题,使用整个消息进行查询")
|
||
embedding = await get_embedding(message, request_type="prompt_build")
|
||
if not embedding:
|
||
logger.error("获取消息嵌入向量失败")
|
||
return ""
|
||
|
||
related_info = self.get_info_from_db(embedding, limit=3, threshold=threshold)
|
||
logger.info(f"知识库检索完成,总耗时: {time.time() - start_time:.3f}秒")
|
||
return related_info
|
||
|
||
# 2. 对每个主题进行知识库查询
|
||
logger.info(f"开始处理{len(topics)}个主题的知识库查询")
|
||
|
||
# 优化:批量获取嵌入向量,减少API调用
|
||
embeddings = {}
|
||
topics_batch = [topic for topic in topics if len(topic) > 0]
|
||
if message: # 确保消息非空
|
||
topics_batch.append(message)
|
||
|
||
# 批量获取嵌入向量
|
||
embed_start_time = time.time()
|
||
for text in topics_batch:
|
||
if not text or len(text.strip()) == 0:
|
||
continue
|
||
|
||
try:
|
||
embedding = await get_embedding(text, request_type="prompt_build")
|
||
if embedding:
|
||
embeddings[text] = embedding
|
||
else:
|
||
logger.warning(f"获取'{text}'的嵌入向量失败")
|
||
except Exception as e:
|
||
logger.error(f"获取'{text}'的嵌入向量时发生错误: {str(e)}")
|
||
|
||
logger.info(f"批量获取嵌入向量完成,耗时: {time.time() - embed_start_time:.3f}秒")
|
||
|
||
if not embeddings:
|
||
logger.error("所有嵌入向量获取失败")
|
||
return ""
|
||
|
||
# 3. 对每个主题进行知识库查询
|
||
all_results = []
|
||
query_start_time = time.time()
|
||
|
||
# 首先添加原始消息的查询结果
|
||
if message in embeddings:
|
||
original_results = self.get_info_from_db(embeddings[message], limit=3, threshold=threshold, return_raw=True)
|
||
if original_results:
|
||
for result in original_results:
|
||
result["topic"] = "原始消息"
|
||
all_results.extend(original_results)
|
||
logger.info(f"原始消息查询到{len(original_results)}条结果")
|
||
|
||
# 然后添加每个主题的查询结果
|
||
for topic in topics:
|
||
if not topic or topic not in embeddings:
|
||
continue
|
||
|
||
try:
|
||
topic_results = self.get_info_from_db(embeddings[topic], limit=3, threshold=threshold, return_raw=True)
|
||
if topic_results:
|
||
# 添加主题标记
|
||
for result in topic_results:
|
||
result["topic"] = topic
|
||
all_results.extend(topic_results)
|
||
logger.info(f"主题'{topic}'查询到{len(topic_results)}条结果")
|
||
except Exception as e:
|
||
logger.error(f"查询主题'{topic}'时发生错误: {str(e)}")
|
||
|
||
logger.info(f"知识库查询完成,耗时: {time.time() - query_start_time:.3f}秒,共获取{len(all_results)}条结果")
|
||
|
||
# 4. 去重和过滤
|
||
process_start_time = time.time()
|
||
unique_contents = set()
|
||
filtered_results = []
|
||
for result in all_results:
|
||
content = result["content"]
|
||
if content not in unique_contents:
|
||
unique_contents.add(content)
|
||
filtered_results.append(result)
|
||
|
||
# 5. 按相似度排序
|
||
filtered_results.sort(key=lambda x: x["similarity"], reverse=True)
|
||
|
||
# 6. 限制总数量(最多10条)
|
||
filtered_results = filtered_results[:10]
|
||
logger.info(
|
||
f"结果处理完成,耗时: {time.time() - process_start_time:.3f}秒,过滤后剩余{len(filtered_results)}条结果"
|
||
)
|
||
|
||
# 7. 格式化输出
|
||
if filtered_results:
|
||
format_start_time = time.time()
|
||
grouped_results = {}
|
||
for result in filtered_results:
|
||
topic = result["topic"]
|
||
if topic not in grouped_results:
|
||
grouped_results[topic] = []
|
||
grouped_results[topic].append(result)
|
||
|
||
# 按主题组织输出
|
||
for topic, results in grouped_results.items():
|
||
related_info += f"【主题: {topic}】\n"
|
||
for _i, result in enumerate(results, 1):
|
||
_similarity = result["similarity"]
|
||
content = result["content"].strip()
|
||
# 调试:为内容添加序号和相似度信息
|
||
# related_info += f"{i}. [{similarity:.2f}] {content}\n"
|
||
related_info += f"{content}\n"
|
||
related_info += "\n"
|
||
|
||
logger.info(f"格式化输出完成,耗时: {time.time() - format_start_time:.3f}秒")
|
||
|
||
logger.info(f"知识库检索总耗时: {time.time() - start_time:.3f}秒")
|
||
return related_info
|
||
|
||
def get_info_from_db(
|
||
self, query_embedding: list, limit: int = 1, threshold: float = 0.5, return_raw: bool = False
|
||
) -> Union[str, list]:
|
||
if not query_embedding:
|
||
return "" if not return_raw else []
|
||
# 使用余弦相似度计算
|
||
pipeline = [
|
||
{
|
||
"$addFields": {
|
||
"dotProduct": {
|
||
"$reduce": {
|
||
"input": {"$range": [0, {"$size": "$embedding"}]},
|
||
"initialValue": 0,
|
||
"in": {
|
||
"$add": [
|
||
"$$value",
|
||
{
|
||
"$multiply": [
|
||
{"$arrayElemAt": ["$embedding", "$$this"]},
|
||
{"$arrayElemAt": [query_embedding, "$$this"]},
|
||
]
|
||
},
|
||
]
|
||
},
|
||
}
|
||
},
|
||
"magnitude1": {
|
||
"$sqrt": {
|
||
"$reduce": {
|
||
"input": "$embedding",
|
||
"initialValue": 0,
|
||
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
|
||
}
|
||
}
|
||
},
|
||
"magnitude2": {
|
||
"$sqrt": {
|
||
"$reduce": {
|
||
"input": query_embedding,
|
||
"initialValue": 0,
|
||
"in": {"$add": ["$$value", {"$multiply": ["$$this", "$$this"]}]},
|
||
}
|
||
}
|
||
},
|
||
}
|
||
},
|
||
{"$addFields": {"similarity": {"$divide": ["$dotProduct", {"$multiply": ["$magnitude1", "$magnitude2"]}]}}},
|
||
{
|
||
"$match": {
|
||
"similarity": {"$gte": threshold} # 只保留相似度大于等于阈值的结果
|
||
}
|
||
},
|
||
{"$sort": {"similarity": -1}},
|
||
{"$limit": limit},
|
||
{"$project": {"content": 1, "similarity": 1}},
|
||
]
|
||
|
||
results = list(db.knowledges.aggregate(pipeline))
|
||
logger.debug(f"知识库查询结果数量: {len(results)}")
|
||
|
||
if not results:
|
||
return "" if not return_raw else []
|
||
|
||
if return_raw:
|
||
return results
|
||
else:
|
||
# 返回所有找到的内容,用换行分隔
|
||
return "\n".join(str(result["content"]) for result in results)
|
||
|
||
|
||
init_prompt()
|
||
prompt_builder = PromptBuilder()
|