mirror of https://github.com/Mai-with-u/MaiBot.git
170 lines
6.3 KiB
Python
170 lines
6.3 KiB
Python
import numpy as np
|
||
from scipy import stats
|
||
from datetime import datetime, timedelta
|
||
|
||
class DistributionVisualizer:
|
||
def __init__(self, mean=0, std=1, skewness=0, sample_size=10):
|
||
"""
|
||
初始化分布可视化器
|
||
|
||
参数:
|
||
mean (float): 期望均值
|
||
std (float): 标准差
|
||
skewness (float): 偏度
|
||
sample_size (int): 样本大小
|
||
"""
|
||
self.mean = mean
|
||
self.std = std
|
||
self.skewness = skewness
|
||
self.sample_size = sample_size
|
||
self.samples = None
|
||
|
||
def generate_samples(self):
|
||
"""生成具有指定参数的样本"""
|
||
if self.skewness == 0:
|
||
# 对于无偏度的情况,直接使用正态分布
|
||
self.samples = np.random.normal(loc=self.mean, scale=self.std, size=self.sample_size)
|
||
else:
|
||
# 使用 scipy.stats 生成具有偏度的分布
|
||
self.samples = stats.skewnorm.rvs(a=self.skewness,
|
||
loc=self.mean,
|
||
scale=self.std,
|
||
size=self.sample_size)
|
||
|
||
def get_weighted_samples(self):
|
||
"""获取加权后的样本数列"""
|
||
if self.samples is None:
|
||
self.generate_samples()
|
||
# 将样本值乘以样本大小
|
||
return self.samples * self.sample_size
|
||
|
||
def get_statistics(self):
|
||
"""获取分布的统计信息"""
|
||
if self.samples is None:
|
||
self.generate_samples()
|
||
|
||
return {
|
||
"均值": np.mean(self.samples),
|
||
"标准差": np.std(self.samples),
|
||
"实际偏度": stats.skew(self.samples)
|
||
}
|
||
|
||
class MemoryBuildScheduler:
|
||
def __init__(self,
|
||
n_hours1, std_hours1, weight1,
|
||
n_hours2, std_hours2, weight2,
|
||
total_samples=50):
|
||
"""
|
||
初始化记忆构建调度器
|
||
|
||
参数:
|
||
n_hours1 (float): 第一个分布的均值(距离现在的小时数)
|
||
std_hours1 (float): 第一个分布的标准差(小时)
|
||
weight1 (float): 第一个分布的权重
|
||
n_hours2 (float): 第二个分布的均值(距离现在的小时数)
|
||
std_hours2 (float): 第二个分布的标准差(小时)
|
||
weight2 (float): 第二个分布的权重
|
||
total_samples (int): 要生成的总时间点数量
|
||
"""
|
||
# 归一化权重
|
||
total_weight = weight1 + weight2
|
||
self.weight1 = weight1 / total_weight
|
||
self.weight2 = weight2 / total_weight
|
||
|
||
self.n_hours1 = n_hours1
|
||
self.std_hours1 = std_hours1
|
||
self.n_hours2 = n_hours2
|
||
self.std_hours2 = std_hours2
|
||
self.total_samples = total_samples
|
||
self.base_time = datetime.now()
|
||
|
||
def generate_time_samples(self):
|
||
"""生成混合分布的时间采样点"""
|
||
# 根据权重计算每个分布的样本数
|
||
samples1 = int(self.total_samples * self.weight1)
|
||
samples2 = self.total_samples - samples1
|
||
|
||
# 生成两个正态分布的小时偏移
|
||
hours_offset1 = np.random.normal(
|
||
loc=self.n_hours1,
|
||
scale=self.std_hours1,
|
||
size=samples1
|
||
)
|
||
|
||
hours_offset2 = np.random.normal(
|
||
loc=self.n_hours2,
|
||
scale=self.std_hours2,
|
||
size=samples2
|
||
)
|
||
|
||
# 合并两个分布的偏移
|
||
hours_offset = np.concatenate([hours_offset1, hours_offset2])
|
||
|
||
# 将偏移转换为实际时间戳(使用绝对值确保时间点在过去)
|
||
timestamps = [self.base_time - timedelta(hours=abs(offset)) for offset in hours_offset]
|
||
|
||
# 按时间排序(从最早到最近)
|
||
return sorted(timestamps)
|
||
|
||
def get_timestamp_array(self):
|
||
"""返回时间戳数组"""
|
||
timestamps = self.generate_time_samples()
|
||
return [int(t.timestamp()) for t in timestamps]
|
||
|
||
def print_time_samples(timestamps, show_distribution=True):
|
||
"""打印时间样本和分布信息"""
|
||
print(f"\n生成的{len(timestamps)}个时间点分布:")
|
||
print("序号".ljust(5), "时间戳".ljust(25), "距现在(小时)")
|
||
print("-" * 50)
|
||
|
||
now = datetime.now()
|
||
time_diffs = []
|
||
|
||
for i, timestamp in enumerate(timestamps, 1):
|
||
hours_diff = (now - timestamp).total_seconds() / 3600
|
||
time_diffs.append(hours_diff)
|
||
print(f"{str(i).ljust(5)} {timestamp.strftime('%Y-%m-%d %H:%M:%S').ljust(25)} {hours_diff:.2f}")
|
||
|
||
# 打印统计信息
|
||
print("\n统计信息:")
|
||
print(f"平均时间偏移:{np.mean(time_diffs):.2f}小时")
|
||
print(f"标准差:{np.std(time_diffs):.2f}小时")
|
||
print(f"最早时间:{min(timestamps).strftime('%Y-%m-%d %H:%M:%S')} ({max(time_diffs):.2f}小时前)")
|
||
print(f"最近时间:{max(timestamps).strftime('%Y-%m-%d %H:%M:%S')} ({min(time_diffs):.2f}小时前)")
|
||
|
||
if show_distribution:
|
||
# 计算时间分布的直方图
|
||
hist, bins = np.histogram(time_diffs, bins=40)
|
||
print("\n时间分布(每个*代表一个时间点):")
|
||
for i in range(len(hist)):
|
||
if hist[i] > 0:
|
||
print(f"{bins[i]:6.1f}-{bins[i+1]:6.1f}小时: {'*' * int(hist[i])}")
|
||
|
||
# 使用示例
|
||
if __name__ == "__main__":
|
||
# 创建一个双峰分布的记忆调度器
|
||
scheduler = MemoryBuildScheduler(
|
||
n_hours1=12, # 第一个分布均值(12小时前)
|
||
std_hours1=8, # 第一个分布标准差
|
||
weight1=0.7, # 第一个分布权重 70%
|
||
n_hours2=36, # 第二个分布均值(36小时前)
|
||
std_hours2=24, # 第二个分布标准差
|
||
weight2=0.3, # 第二个分布权重 30%
|
||
total_samples=50 # 总共生成50个时间点
|
||
)
|
||
|
||
# 生成时间分布
|
||
timestamps = scheduler.generate_time_samples()
|
||
|
||
# 打印结果,包含分布可视化
|
||
print_time_samples(timestamps, show_distribution=True)
|
||
|
||
# 打印时间戳数组
|
||
timestamp_array = scheduler.get_timestamp_array()
|
||
print("\n时间戳数组(Unix时间戳):")
|
||
print("[", end="")
|
||
for i, ts in enumerate(timestamp_array):
|
||
if i > 0:
|
||
print(", ", end="")
|
||
print(ts, end="")
|
||
print("]") |