MaiBot/src/chat/heart_flow/observation/hfcloop_observation.py

125 lines
5.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 定义了来自外部世界的信息
# 外部世界可以是某个聊天 不同平台的聊天 也可以是任意媒体
from datetime import datetime
from src.common.logger_manager import get_logger
from src.chat.focus_chat.heartFC_Cycleinfo import CycleDetail
from typing import List
# Import the new utility function
logger = get_logger("observation")
# 所有观察的基类
class HFCloopObservation:
def __init__(self, observe_id):
self.observe_info = ""
self.observe_id = observe_id
self.last_observe_time = datetime.now().timestamp() # 初始化为当前时间
self.history_loop: List[CycleDetail] = []
def get_observe_info(self):
return self.observe_info
def add_loop_info(self, loop_info: CycleDetail):
self.history_loop.append(loop_info)
async def observe(self):
recent_active_cycles: List[CycleDetail] = []
for cycle in reversed(self.history_loop):
# 只关心实际执行了动作的循环
# action_taken = cycle.loop_action_info["action_taken"]
# if action_taken:
recent_active_cycles.append(cycle)
if len(recent_active_cycles) == 5:
break
cycle_info_block = ""
action_detailed_str = ""
consecutive_text_replies = 0
responses_for_prompt = []
cycle_last_reason = ""
# 检查这最近的活动循环中有多少是连续的文本回复 (从最近的开始看)
for cycle in recent_active_cycles:
action_type = cycle.loop_plan_info["action_result"]["action_type"]
action_reasoning = cycle.loop_plan_info["action_result"]["reasoning"]
is_taken = cycle.loop_action_info["action_taken"]
action_taken_time = cycle.loop_action_info["taken_time"]
action_taken_time_str = datetime.fromtimestamp(action_taken_time).strftime("%H:%M:%S")
# print(action_type)
# print(action_reasoning)
# print(is_taken)
# print(action_taken_time_str)
# print("--------------------------------")
if action_reasoning != cycle_last_reason:
cycle_last_reason = action_reasoning
action_reasoning_str = f"你选择这个action的原因是:{action_reasoning}"
else:
action_reasoning_str = ""
if action_type == "reply":
consecutive_text_replies += 1
response_text = cycle.loop_plan_info["action_result"]["action_data"].get("text", "[空回复]")
responses_for_prompt.append(response_text)
if is_taken:
action_detailed_str += f"{action_taken_time_str}时,你选择回复(action:{action_type},内容是:'{response_text}')。{action_reasoning_str}\n"
else:
action_detailed_str += f"{action_taken_time_str}时,你选择回复(action:{action_type},内容是:'{response_text}'),但是动作失败了。{action_reasoning_str}\n"
elif action_type == "no_reply":
action_detailed_str += (
f"{action_taken_time_str}时,你选择不回复(action:{action_type}){action_reasoning_str}\n"
)
else:
if is_taken:
action_detailed_str += (
f"{action_taken_time_str}时,你选择执行了(action:{action_type}){action_reasoning_str}\n"
)
else:
action_detailed_str += f"{action_taken_time_str}时,你选择执行了(action:{action_type}),但是动作失败了。{action_reasoning_str}\n"
if action_detailed_str:
cycle_info_block = f"\n你最近做的事:\n{action_detailed_str}\n"
else:
cycle_info_block = "\n"
# 根据连续文本回复的数量构建提示信息
if consecutive_text_replies >= 3: # 如果最近的三个活动都是文本回复
cycle_info_block = f'你已经连续回复了三条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}",第三近: "{responses_for_prompt[2]}")。你回复的有点多了,请注意'
elif consecutive_text_replies == 2: # 如果最近的两个活动是文本回复
cycle_info_block = f'你已经连续回复了两条消息(最近: "{responses_for_prompt[0]}",第二近: "{responses_for_prompt[1]}"),请注意'
# 包装提示块,增加可读性,即使没有连续回复也给个标记
# if cycle_info_block:
# cycle_info_block = f"\n你最近的回复\n{cycle_info_block}\n"
# else:
# cycle_info_block = "\n"
# 获取history_loop中最新添加的
if self.history_loop:
last_loop = self.history_loop[0]
start_time = last_loop.start_time
end_time = last_loop.end_time
if start_time is not None and end_time is not None:
time_diff = int(end_time - start_time)
if time_diff > 60:
cycle_info_block += f"距离你上一次阅读消息并思考和规划,已经过去了{int(time_diff / 60)}分钟\n"
else:
cycle_info_block += f"距离你上一次阅读消息并思考和规划,已经过去了{time_diff}\n"
else:
cycle_info_block += "你还没看过消息\n"
self.observe_info = cycle_info_block
def to_dict(self) -> dict:
"""将观察对象转换为可序列化的字典"""
# 只序列化基本信息,避免循环引用
return {
"observe_info": self.observe_info,
"observe_id": self.observe_id,
"last_observe_time": self.last_observe_time,
# 不序列化history_loop避免循环引用
"history_loop_count": len(self.history_loop),
}