mirror of https://github.com/Mai-with-u/MaiBot.git
392 lines
15 KiB
Python
392 lines
15 KiB
Python
"""
|
||
StyleLearner 数据库测试脚本
|
||
使用数据库中的expression数据测试style_learner功能
|
||
"""
|
||
|
||
import os
|
||
import sys
|
||
from typing import List, Dict, Tuple
|
||
from sklearn.model_selection import train_test_split
|
||
from sklearn.metrics import precision_recall_fscore_support
|
||
|
||
# 添加项目根目录到Python路径
|
||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||
|
||
from src.common.database.database_model import Expression, db
|
||
from src.express.style_learner import StyleLearnerManager
|
||
from src.common.logger import get_logger
|
||
|
||
logger = get_logger("style_learner_test")
|
||
|
||
|
||
class StyleLearnerDatabaseTest:
|
||
"""使用数据库数据测试StyleLearner"""
|
||
|
||
def __init__(self, random_state: int = 42):
|
||
self.random_state = random_state
|
||
self.manager = StyleLearnerManager(model_save_path="data/test_style_models")
|
||
|
||
# 测试结果
|
||
self.test_results = {
|
||
"total_samples": 0,
|
||
"train_samples": 0,
|
||
"test_samples": 0,
|
||
"unique_styles": 0,
|
||
"unique_chat_ids": 0,
|
||
"accuracy": 0.0,
|
||
"precision": 0.0,
|
||
"recall": 0.0,
|
||
"f1_score": 0.0,
|
||
"predictions": [],
|
||
"ground_truth": [],
|
||
"model_save_success": False,
|
||
"model_save_path": self.manager.model_save_path
|
||
}
|
||
|
||
def load_data_from_database(self) -> List[Dict]:
|
||
"""
|
||
从数据库加载expression数据
|
||
|
||
Returns:
|
||
List[Dict]: 包含up_content, style, chat_id的数据列表
|
||
"""
|
||
try:
|
||
# 连接数据库
|
||
db.connect(reuse_if_open=True)
|
||
|
||
# 查询所有expression数据
|
||
expressions = Expression.select().where(
|
||
(Expression.up_content.is_null(False)) &
|
||
(Expression.style.is_null(False)) &
|
||
(Expression.chat_id.is_null(False)) &
|
||
(Expression.type == "style")
|
||
)
|
||
|
||
data = []
|
||
for expr in expressions:
|
||
if expr.up_content and expr.style and expr.chat_id:
|
||
data.append({
|
||
"up_content": expr.up_content,
|
||
"style": expr.style,
|
||
"chat_id": expr.chat_id,
|
||
"last_active_time": expr.last_active_time,
|
||
"context": expr.context,
|
||
"situation": expr.situation
|
||
})
|
||
|
||
logger.info(f"从数据库加载了 {len(data)} 条expression数据")
|
||
return data
|
||
|
||
except Exception as e:
|
||
logger.error(f"从数据库加载数据失败: {e}")
|
||
return []
|
||
|
||
def preprocess_data(self, data: List[Dict]) -> List[Dict]:
|
||
"""
|
||
数据预处理
|
||
|
||
Args:
|
||
data: 原始数据
|
||
|
||
Returns:
|
||
List[Dict]: 预处理后的数据
|
||
"""
|
||
# 过滤掉空值或过短的数据
|
||
filtered_data = []
|
||
for item in data:
|
||
up_content = item["up_content"].strip()
|
||
style = item["style"].strip()
|
||
|
||
if len(up_content) >= 2 and len(style) >= 2:
|
||
filtered_data.append({
|
||
"up_content": up_content,
|
||
"style": style,
|
||
"chat_id": item["chat_id"],
|
||
"last_active_time": item["last_active_time"],
|
||
"context": item["context"],
|
||
"situation": item["situation"]
|
||
})
|
||
|
||
logger.info(f"预处理后剩余 {len(filtered_data)} 条数据")
|
||
return filtered_data
|
||
|
||
def split_data(self, data: List[Dict]) -> Tuple[List[Dict], List[Dict]]:
|
||
"""
|
||
分割训练集和测试集
|
||
训练集使用所有数据,测试集从训练集中随机选择5%
|
||
|
||
Args:
|
||
data: 预处理后的数据
|
||
|
||
Returns:
|
||
Tuple[List[Dict], List[Dict]]: (训练集, 测试集)
|
||
"""
|
||
# 训练集使用所有数据
|
||
train_data = data.copy()
|
||
|
||
# 测试集从训练集中随机选择5%
|
||
test_size = 0.05 # 5%
|
||
test_data = train_test_split(
|
||
train_data, test_size=test_size, random_state=self.random_state
|
||
)[1] # 只取测试集部分
|
||
|
||
logger.info(f"数据分割完成: 训练集 {len(train_data)} 条, 测试集 {len(test_data)} 条")
|
||
logger.info(f"训练集使用所有数据,测试集从训练集中随机选择 {test_size*100:.1f}%")
|
||
return train_data, test_data
|
||
|
||
def train_model(self, train_data: List[Dict]) -> None:
|
||
"""
|
||
训练模型
|
||
|
||
Args:
|
||
train_data: 训练数据
|
||
"""
|
||
logger.info("开始训练模型...")
|
||
|
||
# 统计信息
|
||
chat_ids = set()
|
||
styles = set()
|
||
|
||
for item in train_data:
|
||
chat_id = item["chat_id"]
|
||
up_content = item["up_content"]
|
||
style = item["style"]
|
||
|
||
chat_ids.add(chat_id)
|
||
styles.add(style)
|
||
|
||
# 学习映射关系
|
||
success = self.manager.learn_mapping(chat_id, up_content, style)
|
||
if not success:
|
||
logger.warning(f"学习失败: {chat_id} - {up_content} -> {style}")
|
||
|
||
self.test_results["train_samples"] = len(train_data)
|
||
self.test_results["unique_styles"] = len(styles)
|
||
self.test_results["unique_chat_ids"] = len(chat_ids)
|
||
|
||
logger.info(f"训练完成: {len(train_data)} 个样本, {len(styles)} 种风格, {len(chat_ids)} 个聊天室")
|
||
|
||
# 保存训练好的模型
|
||
logger.info("开始保存训练好的模型...")
|
||
save_success = self.manager.save_all_models()
|
||
self.test_results["model_save_success"] = save_success
|
||
|
||
if save_success:
|
||
logger.info(f"所有模型已成功保存到: {self.manager.model_save_path}")
|
||
print(f"✅ 模型已保存到: {self.manager.model_save_path}")
|
||
else:
|
||
logger.warning("部分模型保存失败")
|
||
print(f"⚠️ 模型保存失败,请检查路径: {self.manager.model_save_path}")
|
||
|
||
def test_model(self, test_data: List[Dict]) -> None:
|
||
"""
|
||
测试模型
|
||
|
||
Args:
|
||
test_data: 测试数据
|
||
"""
|
||
logger.info("开始测试模型...")
|
||
|
||
predictions = []
|
||
ground_truth = []
|
||
correct_predictions = 0
|
||
|
||
for item in test_data:
|
||
chat_id = item["chat_id"]
|
||
up_content = item["up_content"]
|
||
true_style = item["style"]
|
||
|
||
# 预测风格
|
||
predicted_style, scores = self.manager.predict_style(chat_id, up_content, top_k=1)
|
||
|
||
predictions.append(predicted_style)
|
||
ground_truth.append(true_style)
|
||
|
||
# 检查预测是否正确
|
||
if predicted_style == true_style:
|
||
correct_predictions += 1
|
||
|
||
# 记录详细预测结果
|
||
self.test_results["predictions"].append({
|
||
"chat_id": chat_id,
|
||
"up_content": up_content,
|
||
"true_style": true_style,
|
||
"predicted_style": predicted_style,
|
||
"scores": scores
|
||
})
|
||
|
||
# 计算准确率
|
||
accuracy = correct_predictions / len(test_data) if test_data else 0
|
||
|
||
# 计算其他指标(需要处理None值)
|
||
valid_predictions = [p for p in predictions if p is not None]
|
||
valid_ground_truth = [gt for p, gt in zip(predictions, ground_truth, strict=False) if p is not None]
|
||
|
||
if valid_predictions:
|
||
precision, recall, f1, _ = precision_recall_fscore_support(
|
||
valid_ground_truth, valid_predictions, average='weighted', zero_division=0
|
||
)
|
||
else:
|
||
precision = recall = f1 = 0.0
|
||
|
||
self.test_results["test_samples"] = len(test_data)
|
||
self.test_results["accuracy"] = accuracy
|
||
self.test_results["precision"] = precision
|
||
self.test_results["recall"] = recall
|
||
self.test_results["f1_score"] = f1
|
||
|
||
logger.info(f"测试完成: 准确率 {accuracy:.4f}, 精确率 {precision:.4f}, 召回率 {recall:.4f}, F1分数 {f1:.4f}")
|
||
|
||
def analyze_results(self) -> None:
|
||
"""分析测试结果"""
|
||
logger.info("=== 测试结果分析 ===")
|
||
|
||
print("\n📊 数据统计:")
|
||
print(f" 总样本数: {self.test_results['total_samples']}")
|
||
print(f" 训练样本数: {self.test_results['train_samples']}")
|
||
print(f" 测试样本数: {self.test_results['test_samples']}")
|
||
print(f" 唯一风格数: {self.test_results['unique_styles']}")
|
||
print(f" 唯一聊天室数: {self.test_results['unique_chat_ids']}")
|
||
|
||
print("\n🎯 模型性能:")
|
||
print(f" 准确率: {self.test_results['accuracy']:.4f}")
|
||
print(f" 精确率: {self.test_results['precision']:.4f}")
|
||
print(f" 召回率: {self.test_results['recall']:.4f}")
|
||
print(f" F1分数: {self.test_results['f1_score']:.4f}")
|
||
|
||
print("\n💾 模型保存:")
|
||
save_status = "成功" if self.test_results['model_save_success'] else "失败"
|
||
print(f" 保存状态: {save_status}")
|
||
print(f" 保存路径: {self.test_results['model_save_path']}")
|
||
|
||
# 分析各聊天室的性能
|
||
chat_performance = {}
|
||
for pred in self.test_results["predictions"]:
|
||
chat_id = pred["chat_id"]
|
||
if chat_id not in chat_performance:
|
||
chat_performance[chat_id] = {"correct": 0, "total": 0}
|
||
|
||
chat_performance[chat_id]["total"] += 1
|
||
if pred["predicted_style"] == pred["true_style"]:
|
||
chat_performance[chat_id]["correct"] += 1
|
||
|
||
print("\n📈 各聊天室性能:")
|
||
for chat_id, perf in chat_performance.items():
|
||
accuracy = perf["correct"] / perf["total"] if perf["total"] > 0 else 0
|
||
print(f" {chat_id}: {accuracy:.4f} ({perf['correct']}/{perf['total']})")
|
||
|
||
# 分析风格分布
|
||
style_counts = {}
|
||
for pred in self.test_results["predictions"]:
|
||
style = pred["true_style"]
|
||
style_counts[style] = style_counts.get(style, 0) + 1
|
||
|
||
print("\n🎨 风格分布 (前10个):")
|
||
sorted_styles = sorted(style_counts.items(), key=lambda x: x[1], reverse=True)
|
||
for style, count in sorted_styles[:10]:
|
||
print(f" {style}: {count} 次")
|
||
|
||
def show_sample_predictions(self, num_samples: int = 10) -> None:
|
||
"""显示样本预测结果"""
|
||
print(f"\n🔍 样本预测结果 (前{num_samples}个):")
|
||
|
||
for i, pred in enumerate(self.test_results["predictions"][:num_samples]):
|
||
status = "✓" if pred["predicted_style"] == pred["true_style"] else "✗"
|
||
print(f"\n {i+1}. {status}")
|
||
print(f" 聊天室: {pred['chat_id']}")
|
||
print(f" 输入内容: {pred['up_content']}")
|
||
print(f" 真实风格: {pred['true_style']}")
|
||
print(f" 预测风格: {pred['predicted_style']}")
|
||
if pred["scores"]:
|
||
top_scores = dict(list(pred["scores"].items())[:3])
|
||
print(f" 分数: {top_scores}")
|
||
|
||
def save_results(self, output_file: str = "style_learner_test_results.txt") -> None:
|
||
"""保存测试结果到文件"""
|
||
try:
|
||
with open(output_file, "w", encoding="utf-8") as f:
|
||
f.write("StyleLearner 数据库测试结果\n")
|
||
f.write("=" * 50 + "\n\n")
|
||
|
||
f.write("数据统计:\n")
|
||
f.write(f" 总样本数: {self.test_results['total_samples']}\n")
|
||
f.write(f" 训练样本数: {self.test_results['train_samples']}\n")
|
||
f.write(f" 测试样本数: {self.test_results['test_samples']}\n")
|
||
f.write(f" 唯一风格数: {self.test_results['unique_styles']}\n")
|
||
f.write(f" 唯一聊天室数: {self.test_results['unique_chat_ids']}\n\n")
|
||
|
||
f.write("模型性能:\n")
|
||
f.write(f" 准确率: {self.test_results['accuracy']:.4f}\n")
|
||
f.write(f" 精确率: {self.test_results['precision']:.4f}\n")
|
||
f.write(f" 召回率: {self.test_results['recall']:.4f}\n")
|
||
f.write(f" F1分数: {self.test_results['f1_score']:.4f}\n\n")
|
||
|
||
f.write("模型保存:\n")
|
||
save_status = "成功" if self.test_results['model_save_success'] else "失败"
|
||
f.write(f" 保存状态: {save_status}\n")
|
||
f.write(f" 保存路径: {self.test_results['model_save_path']}\n\n")
|
||
|
||
f.write("详细预测结果:\n")
|
||
for i, pred in enumerate(self.test_results["predictions"]):
|
||
status = "✓" if pred["predicted_style"] == pred["true_style"] else "✗"
|
||
f.write(f"{i+1}. {status} [{pred['chat_id']}] {pred['up_content']} -> {pred['predicted_style']} (真实: {pred['true_style']})\n")
|
||
|
||
logger.info(f"测试结果已保存到 {output_file}")
|
||
|
||
except Exception as e:
|
||
logger.error(f"保存测试结果失败: {e}")
|
||
|
||
def run_test(self) -> None:
|
||
"""运行完整测试"""
|
||
logger.info("开始StyleLearner数据库测试...")
|
||
|
||
# 1. 加载数据
|
||
raw_data = self.load_data_from_database()
|
||
if not raw_data:
|
||
logger.error("没有加载到数据,测试终止")
|
||
return
|
||
|
||
# 2. 数据预处理
|
||
processed_data = self.preprocess_data(raw_data)
|
||
if not processed_data:
|
||
logger.error("预处理后没有数据,测试终止")
|
||
return
|
||
|
||
self.test_results["total_samples"] = len(processed_data)
|
||
|
||
# 3. 分割数据
|
||
train_data, test_data = self.split_data(processed_data)
|
||
|
||
# 4. 训练模型
|
||
self.train_model(train_data)
|
||
|
||
# 5. 测试模型
|
||
self.test_model(test_data)
|
||
|
||
# 6. 分析结果
|
||
self.analyze_results()
|
||
|
||
# 7. 显示样本预测
|
||
self.show_sample_predictions(10)
|
||
|
||
# 8. 保存结果
|
||
self.save_results()
|
||
|
||
logger.info("StyleLearner数据库测试完成!")
|
||
|
||
|
||
def main():
|
||
"""主函数"""
|
||
print("StyleLearner 数据库测试脚本")
|
||
print("=" * 50)
|
||
|
||
# 创建测试实例
|
||
test = StyleLearnerDatabaseTest(random_state=42)
|
||
|
||
# 运行测试
|
||
test.run_test()
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|