mirror of https://github.com/Mai-with-u/MaiBot.git
300 lines
11 KiB
Python
300 lines
11 KiB
Python
# -*- coding: utf-8 -*-
|
||
import os
|
||
import sys
|
||
import time
|
||
|
||
import jieba
|
||
import matplotlib.pyplot as plt
|
||
import networkx as nx
|
||
from dotenv import load_dotenv
|
||
from loguru import logger
|
||
|
||
# 添加项目根目录到 Python 路径
|
||
root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../.."))
|
||
sys.path.append(root_path)
|
||
|
||
from src.common.database import Database # 使用正确的导入语法
|
||
|
||
# 加载.env.dev文件
|
||
env_path = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))), '.env.dev')
|
||
load_dotenv(env_path)
|
||
|
||
|
||
class Memory_graph:
|
||
def __init__(self):
|
||
self.G = nx.Graph() # 使用 networkx 的图结构
|
||
self.db = Database.get_instance()
|
||
|
||
def connect_dot(self, concept1, concept2):
|
||
self.G.add_edge(concept1, concept2)
|
||
|
||
def add_dot(self, concept, memory):
|
||
if concept in self.G:
|
||
# 如果节点已存在,将新记忆添加到现有列表中
|
||
if 'memory_items' in self.G.nodes[concept]:
|
||
if not isinstance(self.G.nodes[concept]['memory_items'], list):
|
||
# 如果当前不是列表,将其转换为列表
|
||
self.G.nodes[concept]['memory_items'] = [self.G.nodes[concept]['memory_items']]
|
||
self.G.nodes[concept]['memory_items'].append(memory)
|
||
else:
|
||
self.G.nodes[concept]['memory_items'] = [memory]
|
||
else:
|
||
# 如果是新节点,创建新的记忆列表
|
||
self.G.add_node(concept, memory_items=[memory])
|
||
|
||
def get_dot(self, concept):
|
||
# 检查节点是否存在于图中
|
||
if concept in self.G:
|
||
# 从图中获取节点数据
|
||
node_data = self.G.nodes[concept]
|
||
# print(node_data)
|
||
# 创建新的Memory_dot对象
|
||
return concept, node_data
|
||
return None
|
||
|
||
def get_related_item(self, topic, depth=1):
|
||
if topic not in self.G:
|
||
return [], []
|
||
|
||
first_layer_items = []
|
||
second_layer_items = []
|
||
|
||
# 获取相邻节点
|
||
neighbors = list(self.G.neighbors(topic))
|
||
# print(f"第一层: {topic}")
|
||
|
||
# 获取当前节点的记忆项
|
||
node_data = self.get_dot(topic)
|
||
if node_data:
|
||
concept, data = node_data
|
||
if 'memory_items' in data:
|
||
memory_items = data['memory_items']
|
||
if isinstance(memory_items, list):
|
||
first_layer_items.extend(memory_items)
|
||
else:
|
||
first_layer_items.append(memory_items)
|
||
|
||
# 只在depth=2时获取第二层记忆
|
||
if depth >= 2:
|
||
# 获取相邻节点的记忆项
|
||
for neighbor in neighbors:
|
||
# print(f"第二层: {neighbor}")
|
||
node_data = self.get_dot(neighbor)
|
||
if node_data:
|
||
concept, data = node_data
|
||
if 'memory_items' in data:
|
||
memory_items = data['memory_items']
|
||
if isinstance(memory_items, list):
|
||
second_layer_items.extend(memory_items)
|
||
else:
|
||
second_layer_items.append(memory_items)
|
||
|
||
return first_layer_items, second_layer_items
|
||
|
||
def store_memory(self):
|
||
for node in self.G.nodes():
|
||
dot_data = {
|
||
"concept": node
|
||
}
|
||
self.db.store_memory_dots.insert_one(dot_data)
|
||
|
||
@property
|
||
def dots(self):
|
||
# 返回所有节点对应的 Memory_dot 对象
|
||
return [self.get_dot(node) for node in self.G.nodes()]
|
||
|
||
def get_random_chat_from_db(self, length: int, timestamp: str):
|
||
# 从数据库中根据时间戳获取离其最近的聊天记录
|
||
chat_text = ''
|
||
closest_record = self.db.messages.find_one({"time": {"$lte": timestamp}}, sort=[('time', -1)]) # 调试输出
|
||
logger.info(
|
||
f"距离time最近的消息时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(closest_record['time'])))}")
|
||
|
||
if closest_record:
|
||
closest_time = closest_record['time']
|
||
group_id = closest_record['group_id'] # 获取groupid
|
||
# 获取该时间戳之后的length条消息,且groupid相同
|
||
chat_record = list(
|
||
self.db.messages.find({"time": {"$gt": closest_time}, "group_id": group_id}).sort('time', 1).limit(
|
||
length))
|
||
for record in chat_record:
|
||
time_str = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(record['time'])))
|
||
try:
|
||
displayname = "[(%s)%s]%s" % (record["user_id"], record["user_nickname"], record["user_cardname"])
|
||
except:
|
||
displayname = record["user_nickname"] or "用户" + str(record["user_id"])
|
||
chat_text += f'[{time_str}] {displayname}: {record["processed_plain_text"]}\n' # 添加发送者和时间信息
|
||
return chat_text
|
||
|
||
return [] # 如果没有找到记录,返回空列表
|
||
|
||
def save_graph_to_db(self):
|
||
# 清空现有的图数据
|
||
self.db.graph_data.delete_many({})
|
||
# 保存节点
|
||
for node in self.G.nodes(data=True):
|
||
node_data = {
|
||
'concept': node[0],
|
||
'memory_items': node[1].get('memory_items', []) # 默认为空列表
|
||
}
|
||
self.db.graph_data.nodes.insert_one(node_data)
|
||
# 保存边
|
||
for edge in self.G.edges():
|
||
edge_data = {
|
||
'source': edge[0],
|
||
'target': edge[1]
|
||
}
|
||
self.db.graph_data.edges.insert_one(edge_data)
|
||
|
||
def load_graph_from_db(self):
|
||
# 清空当前图
|
||
self.G.clear()
|
||
# 加载节点
|
||
nodes = self.db.graph_data.nodes.find()
|
||
for node in nodes:
|
||
memory_items = node.get('memory_items', [])
|
||
if not isinstance(memory_items, list):
|
||
memory_items = [memory_items] if memory_items else []
|
||
self.G.add_node(node['concept'], memory_items=memory_items)
|
||
# 加载边
|
||
edges = self.db.graph_data.edges.find()
|
||
for edge in edges:
|
||
self.G.add_edge(edge['source'], edge['target'])
|
||
|
||
|
||
def main():
|
||
# 初始化数据库
|
||
Database.initialize(
|
||
uri=os.getenv("MONGODB_URI"),
|
||
host=os.getenv("MONGODB_HOST", "127.0.0.1"),
|
||
port=int(os.getenv("MONGODB_PORT", "27017")),
|
||
db_name=os.getenv("DATABASE_NAME", "MegBot"),
|
||
username=os.getenv("MONGODB_USERNAME"),
|
||
password=os.getenv("MONGODB_PASSWORD"),
|
||
auth_source=os.getenv("MONGODB_AUTH_SOURCE"),
|
||
)
|
||
|
||
memory_graph = Memory_graph()
|
||
memory_graph.load_graph_from_db()
|
||
|
||
# 只显示一次优化后的图形
|
||
visualize_graph_lite(memory_graph)
|
||
|
||
while True:
|
||
query = input("请输入新的查询概念(输入'退出'以结束):")
|
||
if query.lower() == '退出':
|
||
break
|
||
first_layer_items, second_layer_items = memory_graph.get_related_item(query)
|
||
if first_layer_items or second_layer_items:
|
||
logger.debug("第一层记忆:")
|
||
for item in first_layer_items:
|
||
logger.debug(item)
|
||
logger.debug("第二层记忆:")
|
||
for item in second_layer_items:
|
||
logger.debug(item)
|
||
else:
|
||
logger.debug("未找到相关记忆。")
|
||
|
||
|
||
def segment_text(text):
|
||
seg_text = list(jieba.cut(text))
|
||
return seg_text
|
||
|
||
|
||
def find_topic(text, topic_num):
|
||
prompt = f'这是一段文字:{text}。请你从这段话中总结出{topic_num}个话题,帮我列出来,用逗号隔开,尽可能精简。只需要列举{topic_num}个话题就好,不要告诉我其他内容。'
|
||
return prompt
|
||
|
||
|
||
def topic_what(text, topic):
|
||
prompt = f'这是一段文字:{text}。我想知道这记忆里有什么关于{topic}的话题,帮我总结成一句自然的话,可以包含时间和人物。只输出这句话就好'
|
||
return prompt
|
||
|
||
|
||
def visualize_graph_lite(memory_graph: Memory_graph, color_by_memory: bool = False):
|
||
# 设置中文字体
|
||
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
|
||
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
|
||
|
||
G = memory_graph.G
|
||
|
||
# 创建一个新图用于可视化
|
||
H = G.copy()
|
||
|
||
# 移除只有一条记忆的节点和连接数少于3的节点
|
||
nodes_to_remove = []
|
||
for node in H.nodes():
|
||
memory_items = H.nodes[node].get('memory_items', [])
|
||
memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
|
||
degree = H.degree(node)
|
||
if memory_count < 3 or degree < 2: # 改为小于2而不是小于等于2
|
||
nodes_to_remove.append(node)
|
||
|
||
H.remove_nodes_from(nodes_to_remove)
|
||
|
||
# 如果过滤后没有节点,则返回
|
||
if len(H.nodes()) == 0:
|
||
logger.debug("过滤后没有符合条件的节点可显示")
|
||
return
|
||
|
||
# 保存图到本地
|
||
# nx.write_gml(H, "memory_graph.gml") # 保存为 GML 格式
|
||
|
||
# 计算节点大小和颜色
|
||
node_colors = []
|
||
node_sizes = []
|
||
nodes = list(H.nodes())
|
||
|
||
# 获取最大记忆数和最大度数用于归一化
|
||
max_memories = 1
|
||
max_degree = 1
|
||
for node in nodes:
|
||
memory_items = H.nodes[node].get('memory_items', [])
|
||
memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
|
||
degree = H.degree(node)
|
||
max_memories = max(max_memories, memory_count)
|
||
max_degree = max(max_degree, degree)
|
||
|
||
# 计算每个节点的大小和颜色
|
||
for node in nodes:
|
||
# 计算节点大小(基于记忆数量)
|
||
memory_items = H.nodes[node].get('memory_items', [])
|
||
memory_count = len(memory_items) if isinstance(memory_items, list) else (1 if memory_items else 0)
|
||
# 使用指数函数使变化更明显
|
||
ratio = memory_count / max_memories
|
||
size = 500 + 5000 * (ratio) # 使用1.5次方函数使差异不那么明显
|
||
node_sizes.append(size)
|
||
|
||
# 计算节点颜色(基于连接数)
|
||
degree = H.degree(node)
|
||
# 红色分量随着度数增加而增加
|
||
r = (degree / max_degree) ** 0.3
|
||
red = min(1.0, r)
|
||
# 蓝色分量随着度数减少而增加
|
||
blue = max(0.0, 1 - red)
|
||
# blue = 1
|
||
color = (red, 0.1, blue)
|
||
node_colors.append(color)
|
||
|
||
# 绘制图形
|
||
plt.figure(figsize=(12, 8))
|
||
pos = nx.spring_layout(H, k=1, iterations=50) # 增加k值使节点分布更开
|
||
nx.draw(H, pos,
|
||
with_labels=True,
|
||
node_color=node_colors,
|
||
node_size=node_sizes,
|
||
font_size=10,
|
||
font_family='SimHei',
|
||
font_weight='bold',
|
||
edge_color='gray',
|
||
width=0.5,
|
||
alpha=0.9)
|
||
|
||
title = '记忆图谱可视化 - 节点大小表示记忆数量,颜色表示连接数'
|
||
plt.title(title, fontsize=16, fontfamily='SimHei')
|
||
plt.show()
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|