mirror of https://github.com/Mai-with-u/MaiBot.git
524 lines
21 KiB
Python
524 lines
21 KiB
Python
"""
|
||
表达方式LLM评估脚本
|
||
|
||
功能:
|
||
1. 读取已保存的人工评估结果(作为效标)
|
||
2. 使用LLM对相同项目进行评估
|
||
3. 对比人工评估和LLM评估的结果,输出分析报告
|
||
"""
|
||
|
||
import asyncio
|
||
import argparse
|
||
import json
|
||
import random
|
||
import sys
|
||
import os
|
||
import glob
|
||
from typing import List, Dict, Set, Tuple
|
||
|
||
# 添加项目根目录到路径
|
||
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
||
sys.path.insert(0, project_root)
|
||
|
||
from src.llm_models.utils_model import LLMRequest
|
||
from src.config.config import model_config
|
||
from src.common.logger import get_logger
|
||
|
||
logger = get_logger("expression_evaluator_llm")
|
||
|
||
# 评估结果文件路径
|
||
TEMP_DIR = os.path.join(os.path.dirname(__file__), "temp")
|
||
|
||
|
||
def load_manual_results() -> List[Dict]:
|
||
"""
|
||
加载人工评估结果(自动读取temp目录下所有JSON文件并合并)
|
||
|
||
Returns:
|
||
人工评估结果列表(已去重)
|
||
"""
|
||
if not os.path.exists(TEMP_DIR):
|
||
logger.error(f"未找到temp目录: {TEMP_DIR}")
|
||
print("\n✗ 错误:未找到temp目录")
|
||
print(" 请先运行 evaluate_expressions_manual.py 进行人工评估")
|
||
return []
|
||
|
||
# 查找所有JSON文件
|
||
json_files = glob.glob(os.path.join(TEMP_DIR, "*.json"))
|
||
|
||
if not json_files:
|
||
logger.error(f"temp目录下未找到JSON文件: {TEMP_DIR}")
|
||
print("\n✗ 错误:temp目录下未找到JSON文件")
|
||
print(" 请先运行 evaluate_expressions_manual.py 进行人工评估")
|
||
return []
|
||
|
||
logger.info(f"找到 {len(json_files)} 个JSON文件")
|
||
print(f"\n找到 {len(json_files)} 个JSON文件:")
|
||
for json_file in json_files:
|
||
print(f" - {os.path.basename(json_file)}")
|
||
|
||
# 读取并合并所有JSON文件
|
||
all_results = []
|
||
seen_pairs: Set[Tuple[str, str]] = set() # 用于去重
|
||
|
||
for json_file in json_files:
|
||
try:
|
||
with open(json_file, "r", encoding="utf-8") as f:
|
||
data = json.load(f)
|
||
results = data.get("manual_results", [])
|
||
|
||
# 去重:使用(situation, style)作为唯一标识
|
||
for result in results:
|
||
if "situation" not in result or "style" not in result:
|
||
logger.warning(f"跳过无效数据(缺少必要字段): {result}")
|
||
continue
|
||
|
||
pair = (result["situation"], result["style"])
|
||
if pair not in seen_pairs:
|
||
seen_pairs.add(pair)
|
||
all_results.append(result)
|
||
|
||
logger.info(f"从 {os.path.basename(json_file)} 加载了 {len(results)} 条结果")
|
||
except Exception as e:
|
||
logger.error(f"加载文件 {json_file} 失败: {e}")
|
||
print(f" 警告:加载文件 {os.path.basename(json_file)} 失败: {e}")
|
||
continue
|
||
|
||
logger.info(f"成功合并 {len(all_results)} 条人工评估结果(去重后)")
|
||
print(f"\n✓ 成功合并 {len(all_results)} 条人工评估结果(已去重)")
|
||
|
||
return all_results
|
||
|
||
|
||
def create_evaluation_prompt(situation: str, style: str) -> str:
|
||
"""
|
||
创建评估提示词
|
||
|
||
Args:
|
||
situation: 情境
|
||
style: 风格
|
||
|
||
Returns:
|
||
评估提示词
|
||
"""
|
||
prompt = f"""请评估以下表达方式或语言风格以及使用条件或使用情景是否合适:
|
||
使用条件或使用情景:{situation}
|
||
表达方式或言语风格:{style}
|
||
|
||
请从以下方面进行评估:
|
||
1. 表达方式或言语风格 是否与使用条件或使用情景 匹配
|
||
2. 允许部分语法错误或口头化或缺省出现
|
||
3. 表达方式不能太过特指,需要具有泛用性
|
||
4. 一般不涉及具体的人名或名称
|
||
|
||
请以JSON格式输出评估结果:
|
||
{{
|
||
"suitable": true/false,
|
||
"reason": "评估理由(如果不合适,请说明原因)"
|
||
|
||
}}
|
||
如果合适,suitable设为true;如果不合适,suitable设为false,并在reason中说明原因。
|
||
请严格按照JSON格式输出,不要包含其他内容。"""
|
||
|
||
return prompt
|
||
|
||
|
||
async def _single_llm_evaluation(situation: str, style: str, llm: LLMRequest) -> tuple[bool, str, str | None]:
|
||
"""
|
||
执行单次LLM评估
|
||
|
||
Args:
|
||
situation: 情境
|
||
style: 风格
|
||
llm: LLM请求实例
|
||
|
||
Returns:
|
||
(suitable, reason, error) 元组,如果出错则 suitable 为 False,error 包含错误信息
|
||
"""
|
||
try:
|
||
prompt = create_evaluation_prompt(situation, style)
|
||
logger.debug(f"正在评估表达方式: situation={situation}, style={style}")
|
||
|
||
response, (reasoning, model_name, _) = await llm.generate_response_async(
|
||
prompt=prompt,
|
||
temperature=0.6,
|
||
max_tokens=1024
|
||
)
|
||
|
||
logger.debug(f"LLM响应: {response}")
|
||
|
||
# 解析JSON响应
|
||
try:
|
||
evaluation = json.loads(response)
|
||
except json.JSONDecodeError as e:
|
||
import re
|
||
json_match = re.search(r'\{[^{}]*"suitable"[^{}]*\}', response, re.DOTALL)
|
||
if json_match:
|
||
evaluation = json.loads(json_match.group())
|
||
else:
|
||
raise ValueError("无法从响应中提取JSON格式的评估结果") from e
|
||
|
||
suitable = evaluation.get("suitable", False)
|
||
reason = evaluation.get("reason", "未提供理由")
|
||
|
||
logger.debug(f"评估结果: {'通过' if suitable else '不通过'}")
|
||
return suitable, reason, None
|
||
|
||
except Exception as e:
|
||
logger.error(f"评估表达方式 (situation={situation}, style={style}) 时出错: {e}")
|
||
return False, f"评估过程出错: {str(e)}", str(e)
|
||
|
||
|
||
async def evaluate_expression_llm(situation: str, style: str, llm: LLMRequest) -> Dict:
|
||
"""
|
||
使用LLM评估单个表达方式
|
||
|
||
Args:
|
||
situation: 情境
|
||
style: 风格
|
||
llm: LLM请求实例
|
||
|
||
Returns:
|
||
评估结果字典
|
||
"""
|
||
logger.info(f"开始评估表达方式: situation={situation}, style={style}")
|
||
|
||
suitable, reason, error = await _single_llm_evaluation(situation, style, llm)
|
||
|
||
if error:
|
||
suitable = False
|
||
|
||
logger.info(f"评估完成: {'通过' if suitable else '不通过'}")
|
||
|
||
return {
|
||
"situation": situation,
|
||
"style": style,
|
||
"suitable": suitable,
|
||
"reason": reason,
|
||
"error": error,
|
||
"evaluator": "llm"
|
||
}
|
||
|
||
|
||
def compare_evaluations(manual_results: List[Dict], llm_results: List[Dict], method_name: str) -> Dict:
|
||
"""
|
||
对比人工评估和LLM评估的结果
|
||
|
||
Args:
|
||
manual_results: 人工评估结果列表
|
||
llm_results: LLM评估结果列表
|
||
method_name: 评估方法名称(用于标识)
|
||
|
||
Returns:
|
||
对比分析结果字典
|
||
"""
|
||
# 按(situation, style)建立映射
|
||
llm_dict = {(r["situation"], r["style"]): r for r in llm_results}
|
||
|
||
total = len(manual_results)
|
||
matched = 0
|
||
true_positives = 0
|
||
true_negatives = 0
|
||
false_positives = 0
|
||
false_negatives = 0
|
||
|
||
for manual_result in manual_results:
|
||
pair = (manual_result["situation"], manual_result["style"])
|
||
llm_result = llm_dict.get(pair)
|
||
if llm_result is None:
|
||
continue
|
||
|
||
manual_suitable = manual_result["suitable"]
|
||
llm_suitable = llm_result["suitable"]
|
||
|
||
if manual_suitable == llm_suitable:
|
||
matched += 1
|
||
|
||
if manual_suitable and llm_suitable:
|
||
true_positives += 1
|
||
elif not manual_suitable and not llm_suitable:
|
||
true_negatives += 1
|
||
elif not manual_suitable and llm_suitable:
|
||
false_positives += 1
|
||
elif manual_suitable and not llm_suitable:
|
||
false_negatives += 1
|
||
|
||
accuracy = (matched / total * 100) if total > 0 else 0
|
||
precision = (true_positives / (true_positives + false_positives) * 100) if (true_positives + false_positives) > 0 else 0
|
||
recall = (true_positives / (true_positives + false_negatives) * 100) if (true_positives + false_negatives) > 0 else 0
|
||
f1_score = (2 * precision * recall / (precision + recall)) if (precision + recall) > 0 else 0
|
||
specificity = (true_negatives / (true_negatives + false_positives) * 100) if (true_negatives + false_positives) > 0 else 0
|
||
|
||
# 计算人工效标的不合适率
|
||
manual_unsuitable_count = true_negatives + false_positives # 人工评估不合适的总数
|
||
manual_unsuitable_rate = (manual_unsuitable_count / total * 100) if total > 0 else 0
|
||
|
||
# 计算经过LLM删除后剩余项目中的不合适率
|
||
# 在所有项目中,移除LLM判定为不合适的项目后,剩下的项目 = TP + FP(LLM判定为合适的项目)
|
||
# 在这些剩下的项目中,按人工评定的不合适项目 = FP(人工认为不合适,但LLM认为合适)
|
||
llm_kept_count = true_positives + false_positives # LLM判定为合适的项目总数(保留的项目)
|
||
llm_kept_unsuitable_rate = (false_positives / llm_kept_count * 100) if llm_kept_count > 0 else 0
|
||
|
||
# 两者百分比相减(评估LLM评定修正后的不合适率是否有降低)
|
||
rate_difference = manual_unsuitable_rate - llm_kept_unsuitable_rate
|
||
|
||
random_baseline = 50.0
|
||
accuracy_above_random = accuracy - random_baseline
|
||
accuracy_improvement_ratio = (accuracy / random_baseline) if random_baseline > 0 else 0
|
||
|
||
return {
|
||
"method": method_name,
|
||
"total": total,
|
||
"matched": matched,
|
||
"accuracy": accuracy,
|
||
"accuracy_above_random": accuracy_above_random,
|
||
"accuracy_improvement_ratio": accuracy_improvement_ratio,
|
||
"true_positives": true_positives,
|
||
"true_negatives": true_negatives,
|
||
"false_positives": false_positives,
|
||
"false_negatives": false_negatives,
|
||
"precision": precision,
|
||
"recall": recall,
|
||
"f1_score": f1_score,
|
||
"specificity": specificity,
|
||
"manual_unsuitable_rate": manual_unsuitable_rate,
|
||
"llm_kept_unsuitable_rate": llm_kept_unsuitable_rate,
|
||
"rate_difference": rate_difference
|
||
}
|
||
|
||
|
||
async def main(count: int | None = None):
|
||
"""
|
||
主函数
|
||
|
||
Args:
|
||
count: 随机选取的数据条数,如果为None则使用全部数据
|
||
"""
|
||
logger.info("=" * 60)
|
||
logger.info("开始表达方式LLM评估")
|
||
logger.info("=" * 60)
|
||
|
||
# 1. 加载人工评估结果
|
||
print("\n步骤1: 加载人工评估结果")
|
||
manual_results = load_manual_results()
|
||
if not manual_results:
|
||
return
|
||
|
||
print(f"成功加载 {len(manual_results)} 条人工评估结果")
|
||
|
||
# 如果指定了数量,随机选择指定数量的数据
|
||
if count is not None:
|
||
if count <= 0:
|
||
print(f"\n✗ 错误:指定的数量必须大于0,当前值: {count}")
|
||
return
|
||
if count > len(manual_results):
|
||
print(f"\n⚠ 警告:指定的数量 ({count}) 大于可用数据量 ({len(manual_results)}),将使用全部数据")
|
||
else:
|
||
random.seed() # 使用系统时间作为随机种子
|
||
manual_results = random.sample(manual_results, count)
|
||
print(f"随机选取 {len(manual_results)} 条数据进行评估")
|
||
|
||
# 验证数据完整性
|
||
valid_manual_results = []
|
||
for r in manual_results:
|
||
if "situation" in r and "style" in r:
|
||
valid_manual_results.append(r)
|
||
else:
|
||
logger.warning(f"跳过无效数据: {r}")
|
||
|
||
if len(valid_manual_results) != len(manual_results):
|
||
print(f"警告:{len(manual_results) - len(valid_manual_results)} 条数据缺少必要字段,已跳过")
|
||
|
||
print(f"有效数据: {len(valid_manual_results)} 条")
|
||
|
||
# 2. 创建LLM实例并评估
|
||
print("\n步骤2: 创建LLM实例")
|
||
try:
|
||
llm = LLMRequest(
|
||
model_set=model_config.model_task_config.tool_use,
|
||
request_type="expression_evaluator_llm"
|
||
)
|
||
except Exception as e:
|
||
logger.error(f"创建LLM实例失败: {e}")
|
||
import traceback
|
||
logger.error(traceback.format_exc())
|
||
return
|
||
|
||
print("\n步骤3: 开始LLM评估")
|
||
llm_results = []
|
||
for i, manual_result in enumerate(valid_manual_results, 1):
|
||
print(f"LLM评估进度: {i}/{len(valid_manual_results)}")
|
||
llm_results.append(await evaluate_expression_llm(
|
||
manual_result["situation"],
|
||
manual_result["style"],
|
||
llm
|
||
))
|
||
await asyncio.sleep(0.3)
|
||
|
||
# 5. 输出FP和FN项目(在评估结果之前)
|
||
llm_dict = {(r["situation"], r["style"]): r for r in llm_results}
|
||
|
||
# 5.1 输出FP项目(人工评估不通过但LLM误判为通过)
|
||
print("\n" + "=" * 60)
|
||
print("人工评估不通过但LLM误判为通过的项目(FP - False Positive)")
|
||
print("=" * 60)
|
||
|
||
fp_items = []
|
||
for manual_result in valid_manual_results:
|
||
pair = (manual_result["situation"], manual_result["style"])
|
||
llm_result = llm_dict.get(pair)
|
||
if llm_result is None:
|
||
continue
|
||
|
||
# 人工评估不通过,但LLM评估通过(FP情况)
|
||
if not manual_result["suitable"] and llm_result["suitable"]:
|
||
fp_items.append({
|
||
"situation": manual_result["situation"],
|
||
"style": manual_result["style"],
|
||
"manual_suitable": manual_result["suitable"],
|
||
"llm_suitable": llm_result["suitable"],
|
||
"llm_reason": llm_result.get("reason", "未提供理由"),
|
||
"llm_error": llm_result.get("error")
|
||
})
|
||
|
||
if fp_items:
|
||
print(f"\n共找到 {len(fp_items)} 条误判项目:\n")
|
||
for idx, item in enumerate(fp_items, 1):
|
||
print(f"--- [{idx}] ---")
|
||
print(f"Situation: {item['situation']}")
|
||
print(f"Style: {item['style']}")
|
||
print("人工评估: 不通过 ❌")
|
||
print("LLM评估: 通过 ✅ (误判)")
|
||
if item.get('llm_error'):
|
||
print(f"LLM错误: {item['llm_error']}")
|
||
print(f"LLM理由: {item['llm_reason']}")
|
||
print()
|
||
else:
|
||
print("\n✓ 没有误判项目(所有人工评估不通过的项目都被LLM正确识别为不通过)")
|
||
|
||
# 5.2 输出FN项目(人工评估通过但LLM误判为不通过)
|
||
print("\n" + "=" * 60)
|
||
print("人工评估通过但LLM误判为不通过的项目(FN - False Negative)")
|
||
print("=" * 60)
|
||
|
||
fn_items = []
|
||
for manual_result in valid_manual_results:
|
||
pair = (manual_result["situation"], manual_result["style"])
|
||
llm_result = llm_dict.get(pair)
|
||
if llm_result is None:
|
||
continue
|
||
|
||
# 人工评估通过,但LLM评估不通过(FN情况)
|
||
if manual_result["suitable"] and not llm_result["suitable"]:
|
||
fn_items.append({
|
||
"situation": manual_result["situation"],
|
||
"style": manual_result["style"],
|
||
"manual_suitable": manual_result["suitable"],
|
||
"llm_suitable": llm_result["suitable"],
|
||
"llm_reason": llm_result.get("reason", "未提供理由"),
|
||
"llm_error": llm_result.get("error")
|
||
})
|
||
|
||
if fn_items:
|
||
print(f"\n共找到 {len(fn_items)} 条误删项目:\n")
|
||
for idx, item in enumerate(fn_items, 1):
|
||
print(f"--- [{idx}] ---")
|
||
print(f"Situation: {item['situation']}")
|
||
print(f"Style: {item['style']}")
|
||
print("人工评估: 通过 ✅")
|
||
print("LLM评估: 不通过 ❌ (误删)")
|
||
if item.get('llm_error'):
|
||
print(f"LLM错误: {item['llm_error']}")
|
||
print(f"LLM理由: {item['llm_reason']}")
|
||
print()
|
||
else:
|
||
print("\n✓ 没有误删项目(所有人工评估通过的项目都被LLM正确识别为通过)")
|
||
|
||
# 6. 对比分析并输出结果
|
||
comparison = compare_evaluations(valid_manual_results, llm_results, "LLM评估")
|
||
|
||
print("\n" + "=" * 60)
|
||
print("评估结果(以人工评估为标准)")
|
||
print("=" * 60)
|
||
|
||
# 详细评估结果(核心指标优先)
|
||
print(f"\n--- {comparison['method']} ---")
|
||
print(f" 总数: {comparison['total']} 条")
|
||
print()
|
||
# print(" 【核心能力指标】")
|
||
print(f" 特定负类召回率: {comparison['specificity']:.2f}% (将不合适项目正确提取出来的能力)")
|
||
print(f" - 计算: TN / (TN + FP) = {comparison['true_negatives']} / ({comparison['true_negatives']} + {comparison['false_positives']})")
|
||
print(f" - 含义: 在 {comparison['true_negatives'] + comparison['false_positives']} 个实际不合适的项目中,正确识别出 {comparison['true_negatives']} 个")
|
||
# print(f" - 随机水平: 50.00% (当前高于随机: {comparison['specificity'] - 50.0:+.2f}%)")
|
||
print()
|
||
print(f" 召回率: {comparison['recall']:.2f}% (尽可能少的误删合适项目的能力)")
|
||
print(f" - 计算: TP / (TP + FN) = {comparison['true_positives']} / ({comparison['true_positives']} + {comparison['false_negatives']})")
|
||
print(f" - 含义: 在 {comparison['true_positives'] + comparison['false_negatives']} 个实际合适的项目中,正确识别出 {comparison['true_positives']} 个")
|
||
# print(f" - 随机水平: 50.00% (当前高于随机: {comparison['recall'] - 50.0:+.2f}%)")
|
||
print()
|
||
print(" 【其他指标】")
|
||
print(f" 准确率: {comparison['accuracy']:.2f}% (整体判断正确率)")
|
||
print(f" 精确率: {comparison['precision']:.2f}% (判断为合适的项目中,实际合适的比例)")
|
||
print(f" F1分数: {comparison['f1_score']:.2f} (精确率和召回率的调和平均)")
|
||
print(f" 匹配数: {comparison['matched']}/{comparison['total']}")
|
||
print()
|
||
print(" 【不合适率分析】")
|
||
print(f" 人工效标的不合适率: {comparison['manual_unsuitable_rate']:.2f}%")
|
||
print(f" - 计算: (TN + FP) / 总数 = ({comparison['true_negatives']} + {comparison['false_positives']}) / {comparison['total']}")
|
||
print(f" - 含义: 在人工评估中,有 {comparison['manual_unsuitable_rate']:.2f}% 的项目被判定为不合适")
|
||
print()
|
||
print(f" 经过LLM删除后剩余项目中的不合适率: {comparison['llm_kept_unsuitable_rate']:.2f}%")
|
||
print(f" - 计算: FP / (TP + FP) = {comparison['false_positives']} / ({comparison['true_positives']} + {comparison['false_positives']})")
|
||
print(f" - 含义: 在所有项目中,移除LLM判定为不合适的项目后,在剩下的 {comparison['true_positives'] + comparison['false_positives']} 个项目中,人工认为不合适的项目占 {comparison['llm_kept_unsuitable_rate']:.2f}%")
|
||
print()
|
||
# print(f" 两者百分比差值: {comparison['rate_difference']:+.2f}%")
|
||
# print(f" - 计算: 人工效标不合适率 - LLM删除后剩余项目不合适率 = {comparison['manual_unsuitable_rate']:.2f}% - {comparison['llm_kept_unsuitable_rate']:.2f}%")
|
||
# print(f" - 含义: {'LLM删除后剩余项目中的不合适率降低了' if comparison['rate_difference'] > 0 else 'LLM删除后剩余项目中的不合适率反而升高了' if comparison['rate_difference'] < 0 else '两者相等'} ({'✓ LLM删除有效' if comparison['rate_difference'] > 0 else '✗ LLM删除效果不佳' if comparison['rate_difference'] < 0 else '效果相同'})")
|
||
# print()
|
||
print(" 【分类统计】")
|
||
print(f" TP (正确识别为合适): {comparison['true_positives']}")
|
||
print(f" TN (正确识别为不合适): {comparison['true_negatives']} ⭐")
|
||
print(f" FP (误判为合适): {comparison['false_positives']} ⚠️")
|
||
print(f" FN (误删合适项目): {comparison['false_negatives']} ⚠️")
|
||
|
||
# 7. 保存结果到JSON文件
|
||
output_file = os.path.join(project_root, "data", "expression_evaluation_llm.json")
|
||
try:
|
||
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
||
with open(output_file, "w", encoding="utf-8") as f:
|
||
json.dump({
|
||
"manual_results": valid_manual_results,
|
||
"llm_results": llm_results,
|
||
"comparison": comparison
|
||
}, f, ensure_ascii=False, indent=2)
|
||
logger.info(f"\n评估结果已保存到: {output_file}")
|
||
except Exception as e:
|
||
logger.warning(f"保存结果到文件失败: {e}")
|
||
|
||
print("\n" + "=" * 60)
|
||
print("评估完成")
|
||
print("=" * 60)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser(
|
||
description="表达方式LLM评估脚本",
|
||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||
epilog="""
|
||
示例:
|
||
python evaluate_expressions_llm_v6.py # 使用全部数据
|
||
python evaluate_expressions_llm_v6.py -n 50 # 随机选取50条数据
|
||
python evaluate_expressions_llm_v6.py --count 100 # 随机选取100条数据
|
||
"""
|
||
)
|
||
parser.add_argument(
|
||
"-n", "--count",
|
||
type=int,
|
||
default=None,
|
||
help="随机选取的数据条数(默认:使用全部数据)"
|
||
)
|
||
|
||
args = parser.parse_args()
|
||
asyncio.run(main(count=args.count))
|
||
|