mirror of https://github.com/Mai-with-u/MaiBot.git
384 lines
12 KiB
Python
384 lines
12 KiB
Python
"""
|
||
模型列表获取API路由
|
||
|
||
提供从各个 AI 厂商 API 获取可用模型列表的代理接口
|
||
"""
|
||
|
||
import os
|
||
import httpx
|
||
from fastapi import APIRouter, HTTPException, Query, Depends, Cookie, Header
|
||
from typing import Optional
|
||
import tomlkit
|
||
|
||
from src.common.logger import get_logger
|
||
from src.config.config import CONFIG_DIR
|
||
from src.webui.auth import verify_auth_token_from_cookie_or_header
|
||
|
||
logger = get_logger("webui")
|
||
|
||
router = APIRouter(prefix="/models", tags=["models"])
|
||
|
||
|
||
def require_auth(
|
||
maibot_session: Optional[str] = Cookie(None),
|
||
authorization: Optional[str] = Header(None),
|
||
) -> bool:
|
||
"""认证依赖:验证用户是否已登录"""
|
||
return verify_auth_token_from_cookie_or_header(maibot_session, authorization)
|
||
|
||
|
||
# 模型获取器配置
|
||
MODEL_FETCHER_CONFIG = {
|
||
# OpenAI 兼容格式的提供商
|
||
"openai": {
|
||
"endpoint": "/models",
|
||
"parser": "openai",
|
||
},
|
||
# Gemini 格式
|
||
"gemini": {
|
||
"endpoint": "/models",
|
||
"parser": "gemini",
|
||
},
|
||
}
|
||
|
||
|
||
def _normalize_url(url: str) -> str:
|
||
"""规范化 URL(去掉尾部斜杠)"""
|
||
if not url:
|
||
return ""
|
||
return url.rstrip("/")
|
||
|
||
|
||
def _parse_openai_response(data: dict) -> list[dict]:
|
||
"""
|
||
解析 OpenAI 格式的模型列表响应
|
||
|
||
格式: { "data": [{ "id": "gpt-4", "object": "model", ... }] }
|
||
"""
|
||
models = []
|
||
if "data" in data and isinstance(data["data"], list):
|
||
for model in data["data"]:
|
||
if isinstance(model, dict) and "id" in model:
|
||
models.append(
|
||
{
|
||
"id": model["id"],
|
||
"name": model.get("name") or model["id"],
|
||
"owned_by": model.get("owned_by", ""),
|
||
}
|
||
)
|
||
return models
|
||
|
||
|
||
def _parse_gemini_response(data: dict) -> list[dict]:
|
||
"""
|
||
解析 Gemini 格式的模型列表响应
|
||
|
||
格式: { "models": [{ "name": "models/gemini-pro", "displayName": "Gemini Pro", ... }] }
|
||
"""
|
||
models = []
|
||
if "models" in data and isinstance(data["models"], list):
|
||
for model in data["models"]:
|
||
if isinstance(model, dict) and "name" in model:
|
||
# Gemini 的 name 格式是 "models/gemini-pro",我们只取后面部分
|
||
model_id = model["name"]
|
||
if model_id.startswith("models/"):
|
||
model_id = model_id[7:] # 去掉 "models/" 前缀
|
||
models.append(
|
||
{
|
||
"id": model_id,
|
||
"name": model.get("displayName") or model_id,
|
||
"owned_by": "google",
|
||
}
|
||
)
|
||
return models
|
||
|
||
|
||
async def _fetch_models_from_provider(
|
||
base_url: str,
|
||
api_key: str,
|
||
endpoint: str,
|
||
parser: str,
|
||
client_type: str = "openai",
|
||
) -> list[dict]:
|
||
"""
|
||
从提供商 API 获取模型列表
|
||
|
||
Args:
|
||
base_url: 提供商的基础 URL
|
||
api_key: API 密钥
|
||
endpoint: 获取模型列表的端点
|
||
parser: 响应解析器类型 ('openai' | 'gemini')
|
||
client_type: 客户端类型 ('openai' | 'gemini')
|
||
|
||
Returns:
|
||
模型列表
|
||
"""
|
||
url = f"{_normalize_url(base_url)}{endpoint}"
|
||
|
||
# 根据客户端类型设置请求头
|
||
headers = {}
|
||
params = {}
|
||
|
||
if client_type == "gemini":
|
||
# Gemini 使用 URL 参数传递 API Key
|
||
params["key"] = api_key
|
||
else:
|
||
# OpenAI 兼容格式使用 Authorization 头
|
||
headers["Authorization"] = f"Bearer {api_key}"
|
||
|
||
try:
|
||
async with httpx.AsyncClient(timeout=30.0) as client:
|
||
response = await client.get(url, headers=headers, params=params)
|
||
response.raise_for_status()
|
||
data = response.json()
|
||
except httpx.TimeoutException as e:
|
||
raise HTTPException(status_code=504, detail="请求超时,请稍后重试") from e
|
||
except httpx.HTTPStatusError as e:
|
||
# 注意:使用 502 Bad Gateway 而不是原始的 401/403,
|
||
# 因为前端的 fetchWithAuth 会把 401 当作 WebUI 认证失败处理
|
||
if e.response.status_code == 401:
|
||
raise HTTPException(status_code=502, detail="API Key 无效或已过期") from e
|
||
elif e.response.status_code == 403:
|
||
raise HTTPException(status_code=502, detail="没有权限访问模型列表,请检查 API Key 权限") from e
|
||
elif e.response.status_code == 404:
|
||
raise HTTPException(status_code=502, detail="该提供商不支持获取模型列表") from e
|
||
else:
|
||
raise HTTPException(
|
||
status_code=502, detail=f"上游服务请求失败 ({e.response.status_code}): {e.response.text[:200]}"
|
||
) from e
|
||
except Exception as e:
|
||
logger.error(f"获取模型列表失败: {e}")
|
||
raise HTTPException(status_code=500, detail=f"获取模型列表失败: {str(e)}") from e
|
||
|
||
# 根据解析器类型解析响应
|
||
if parser == "openai":
|
||
return _parse_openai_response(data)
|
||
elif parser == "gemini":
|
||
return _parse_gemini_response(data)
|
||
else:
|
||
raise HTTPException(status_code=400, detail=f"不支持的解析器类型: {parser}")
|
||
|
||
|
||
def _get_provider_config(provider_name: str) -> Optional[dict]:
|
||
"""
|
||
从 model_config.toml 获取指定提供商的配置
|
||
|
||
Args:
|
||
provider_name: 提供商名称
|
||
|
||
Returns:
|
||
提供商配置,如果未找到则返回 None
|
||
"""
|
||
config_path = os.path.join(CONFIG_DIR, "model_config.toml")
|
||
if not os.path.exists(config_path):
|
||
return None
|
||
|
||
try:
|
||
with open(config_path, "r", encoding="utf-8") as f:
|
||
config_data = tomlkit.load(f)
|
||
|
||
providers = config_data.get("api_providers", [])
|
||
for provider in providers:
|
||
if provider.get("name") == provider_name:
|
||
return dict(provider)
|
||
|
||
return None
|
||
except Exception as e:
|
||
logger.error(f"读取提供商配置失败: {e}")
|
||
return None
|
||
|
||
|
||
@router.get("/list")
|
||
async def get_provider_models(
|
||
provider_name: str = Query(..., description="提供商名称"),
|
||
parser: str = Query("openai", description="响应解析器类型 (openai | gemini)"),
|
||
endpoint: str = Query("/models", description="获取模型列表的端点"),
|
||
_auth: bool = Depends(require_auth),
|
||
):
|
||
"""
|
||
获取指定提供商的可用模型列表
|
||
|
||
通过提供商名称查找配置,然后请求对应的模型列表端点
|
||
"""
|
||
# 获取提供商配置
|
||
provider_config = _get_provider_config(provider_name)
|
||
if not provider_config:
|
||
raise HTTPException(status_code=404, detail=f"未找到提供商: {provider_name}")
|
||
|
||
base_url = provider_config.get("base_url")
|
||
api_key = provider_config.get("api_key")
|
||
client_type = provider_config.get("client_type", "openai")
|
||
|
||
if not base_url:
|
||
raise HTTPException(status_code=400, detail="提供商配置缺少 base_url")
|
||
if not api_key:
|
||
raise HTTPException(status_code=400, detail="提供商配置缺少 api_key")
|
||
|
||
# 获取模型列表
|
||
models = await _fetch_models_from_provider(
|
||
base_url=base_url,
|
||
api_key=api_key,
|
||
endpoint=endpoint,
|
||
parser=parser,
|
||
client_type=client_type,
|
||
)
|
||
|
||
return {
|
||
"success": True,
|
||
"models": models,
|
||
"provider": provider_name,
|
||
"count": len(models),
|
||
}
|
||
|
||
|
||
@router.get("/list-by-url")
|
||
async def get_models_by_url(
|
||
base_url: str = Query(..., description="提供商的基础 URL"),
|
||
api_key: str = Query(..., description="API Key"),
|
||
parser: str = Query("openai", description="响应解析器类型 (openai | gemini)"),
|
||
endpoint: str = Query("/models", description="获取模型列表的端点"),
|
||
client_type: str = Query("openai", description="客户端类型 (openai | gemini)"),
|
||
_auth: bool = Depends(require_auth),
|
||
):
|
||
"""
|
||
通过 URL 直接获取模型列表(用于自定义提供商)
|
||
"""
|
||
models = await _fetch_models_from_provider(
|
||
base_url=base_url,
|
||
api_key=api_key,
|
||
endpoint=endpoint,
|
||
parser=parser,
|
||
client_type=client_type,
|
||
)
|
||
|
||
return {
|
||
"success": True,
|
||
"models": models,
|
||
"count": len(models),
|
||
}
|
||
|
||
|
||
@router.get("/test-connection")
|
||
async def test_provider_connection(
|
||
base_url: str = Query(..., description="提供商的基础 URL"),
|
||
api_key: Optional[str] = Query(None, description="API Key(可选,用于验证 Key 有效性)"),
|
||
_auth: bool = Depends(require_auth),
|
||
):
|
||
"""
|
||
测试提供商连接状态
|
||
|
||
分两步测试:
|
||
1. 网络连通性测试:向 base_url 发送请求,检查是否能连接
|
||
2. API Key 验证(可选):如果提供了 api_key,尝试获取模型列表验证 Key 是否有效
|
||
|
||
返回:
|
||
- network_ok: 网络是否连通
|
||
- api_key_valid: API Key 是否有效(仅在提供 api_key 时返回)
|
||
- latency_ms: 响应延迟(毫秒)
|
||
- error: 错误信息(如果有)
|
||
"""
|
||
import time
|
||
|
||
base_url = _normalize_url(base_url)
|
||
if not base_url:
|
||
raise HTTPException(status_code=400, detail="base_url 不能为空")
|
||
|
||
result = {
|
||
"network_ok": False,
|
||
"api_key_valid": None,
|
||
"latency_ms": None,
|
||
"error": None,
|
||
"http_status": None,
|
||
}
|
||
|
||
# 第一步:测试网络连通性
|
||
try:
|
||
start_time = time.time()
|
||
async with httpx.AsyncClient(timeout=10.0, follow_redirects=True) as client:
|
||
# 尝试 GET 请求 base_url(不需要 API Key)
|
||
response = await client.get(base_url)
|
||
latency = (time.time() - start_time) * 1000
|
||
|
||
result["network_ok"] = True
|
||
result["latency_ms"] = round(latency, 2)
|
||
result["http_status"] = response.status_code
|
||
|
||
except httpx.ConnectError as e:
|
||
result["error"] = f"连接失败:无法连接到服务器 ({str(e)})"
|
||
return result
|
||
except httpx.TimeoutException:
|
||
result["error"] = "连接超时:服务器响应时间过长"
|
||
return result
|
||
except httpx.RequestError as e:
|
||
result["error"] = f"请求错误:{str(e)}"
|
||
return result
|
||
except Exception as e:
|
||
result["error"] = f"未知错误:{str(e)}"
|
||
return result
|
||
|
||
# 第二步:如果提供了 API Key,验证其有效性
|
||
if api_key:
|
||
try:
|
||
start_time = time.time()
|
||
async with httpx.AsyncClient(timeout=15.0, follow_redirects=True) as client:
|
||
headers = {
|
||
"Authorization": f"Bearer {api_key}",
|
||
"Content-Type": "application/json",
|
||
}
|
||
# 尝试获取模型列表
|
||
models_url = f"{base_url}/models"
|
||
response = await client.get(models_url, headers=headers)
|
||
|
||
if response.status_code == 200:
|
||
result["api_key_valid"] = True
|
||
elif response.status_code in (401, 403):
|
||
result["api_key_valid"] = False
|
||
result["error"] = "API Key 无效或已过期"
|
||
else:
|
||
# 其他状态码,可能是端点不支持,但 Key 可能是有效的
|
||
result["api_key_valid"] = None
|
||
|
||
except Exception as e:
|
||
# API Key 验证失败不影响网络连通性结果
|
||
logger.warning(f"API Key 验证失败: {e}")
|
||
result["api_key_valid"] = None
|
||
|
||
return result
|
||
|
||
|
||
@router.post("/test-connection-by-name")
|
||
async def test_provider_connection_by_name(
|
||
provider_name: str = Query(..., description="提供商名称"),
|
||
_auth: bool = Depends(require_auth),
|
||
):
|
||
"""
|
||
通过提供商名称测试连接(从配置文件读取信息)
|
||
"""
|
||
# 读取配置文件
|
||
model_config_path = os.path.join(CONFIG_DIR, "model_config.toml")
|
||
if not os.path.exists(model_config_path):
|
||
raise HTTPException(status_code=404, detail="配置文件不存在")
|
||
|
||
with open(model_config_path, "r", encoding="utf-8") as f:
|
||
config = tomlkit.load(f)
|
||
|
||
# 查找提供商
|
||
providers = config.get("api_providers", [])
|
||
provider = None
|
||
for p in providers:
|
||
if p.get("name") == provider_name:
|
||
provider = p
|
||
break
|
||
|
||
if not provider:
|
||
raise HTTPException(status_code=404, detail=f"未找到提供商: {provider_name}")
|
||
|
||
base_url = provider.get("base_url", "")
|
||
api_key = provider.get("api_key", "")
|
||
|
||
if not base_url:
|
||
raise HTTPException(status_code=400, detail="提供商配置缺少 base_url")
|
||
|
||
# 调用测试接口
|
||
return await test_provider_connection(base_url=base_url, api_key=api_key if api_key else None)
|