import asyncio import statistics # 导入 statistics 模块 import time import traceback from random import random from typing import List, Optional # 导入 Optional from maim_message import UserInfo, Seg from src.common.logger_manager import get_logger from src.heart_flow.utils_chat import get_chat_type_and_target_info from src.manager.mood_manager import mood_manager from src.chat.message_receive.chat_stream import ChatStream, chat_manager from src.chat.person_info.relationship_manager import relationship_manager from src.chat.utils.info_catcher import info_catcher_manager from src.chat.utils.timer_calculator import Timer from .normal_chat_generator import NormalChatGenerator from ..message_receive.message import MessageSending, MessageRecv, MessageThinking, MessageSet from src.chat.message_receive.message_sender import message_manager from src.chat.utils.utils_image import image_path_to_base64 from src.chat.emoji_system.emoji_manager import emoji_manager from src.chat.normal_chat.willing.willing_manager import willing_manager from src.config.config import global_config logger = get_logger("chat") class NormalChat: def __init__(self, chat_stream: ChatStream, interest_dict: dict = None): """初始化 NormalChat 实例。只进行同步操作。""" # Basic info from chat_stream (sync) self.chat_stream = chat_stream self.stream_id = chat_stream.stream_id # Get initial stream name, might be updated in initialize self.stream_name = chat_manager.get_stream_name(self.stream_id) or self.stream_id # Interest dict self.interest_dict = interest_dict # --- Initialize attributes (defaults) --- self.is_group_chat: bool = False self.chat_target_info: Optional[dict] = None # --- End Initialization --- # Other sync initializations self.gpt = NormalChatGenerator() self.mood_manager = mood_manager self.start_time = time.time() self.last_speak_time = 0 self._chat_task: Optional[asyncio.Task] = None self._initialized = False # Track initialization status # logger.info(f"[{self.stream_name}] NormalChat 实例 __init__ 完成 (同步部分)。") # Avoid logging here as stream_name might not be final async def initialize(self): """异步初始化,获取聊天类型和目标信息。""" if self._initialized: return # --- Use utility function to determine chat type and fetch info --- self.is_group_chat, self.chat_target_info = await get_chat_type_and_target_info(self.stream_id) # Update stream_name again after potential async call in util func self.stream_name = chat_manager.get_stream_name(self.stream_id) or self.stream_id # --- End using utility function --- self._initialized = True logger.info(f"[{self.stream_name}] NormalChat 实例 initialize 完成 (异步部分)。") # 改为实例方法 async def _create_thinking_message(self, message: MessageRecv, timestamp: Optional[float] = None) -> str: """创建思考消息""" messageinfo = message.message_info bot_user_info = UserInfo( user_id=global_config.BOT_QQ, user_nickname=global_config.BOT_NICKNAME, platform=messageinfo.platform, ) thinking_time_point = round(time.time(), 2) thinking_id = "mt" + str(thinking_time_point) thinking_message = MessageThinking( message_id=thinking_id, chat_stream=self.chat_stream, bot_user_info=bot_user_info, reply=message, thinking_start_time=thinking_time_point, timestamp=timestamp if timestamp is not None else None, ) await message_manager.add_message(thinking_message) return thinking_id # 改为实例方法 async def _add_messages_to_manager( self, message: MessageRecv, response_set: List[str], thinking_id ) -> Optional[MessageSending]: """发送回复消息""" container = await message_manager.get_container(self.stream_id) # 使用 self.stream_id thinking_message = None for msg in container.messages[:]: if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id: thinking_message = msg container.messages.remove(msg) break if not thinking_message: logger.warning(f"[{self.stream_name}] 未找到对应的思考消息 {thinking_id},可能已超时被移除") return None thinking_start_time = thinking_message.thinking_start_time message_set = MessageSet(self.chat_stream, thinking_id) # 使用 self.chat_stream mark_head = False first_bot_msg = None for msg in response_set: message_segment = Seg(type="text", data=msg) bot_message = MessageSending( message_id=thinking_id, chat_stream=self.chat_stream, # 使用 self.chat_stream bot_user_info=UserInfo( user_id=global_config.BOT_QQ, user_nickname=global_config.BOT_NICKNAME, platform=message.message_info.platform, ), sender_info=message.message_info.user_info, message_segment=message_segment, reply=message, is_head=not mark_head, is_emoji=False, thinking_start_time=thinking_start_time, apply_set_reply_logic=True, ) if not mark_head: mark_head = True first_bot_msg = bot_message message_set.add_message(bot_message) await message_manager.add_message(message_set) self.last_speak_time = time.time() return first_bot_msg # 改为实例方法 async def _handle_emoji(self, message: MessageRecv, response: str): """处理表情包""" if random() < global_config.emoji_chance: emoji_raw = await emoji_manager.get_emoji_for_text(response) if emoji_raw: emoji_path, description = emoji_raw emoji_cq = image_path_to_base64(emoji_path) thinking_time_point = round(message.message_info.time, 2) message_segment = Seg(type="emoji", data=emoji_cq) bot_message = MessageSending( message_id="mt" + str(thinking_time_point), chat_stream=self.chat_stream, # 使用 self.chat_stream bot_user_info=UserInfo( user_id=global_config.BOT_QQ, user_nickname=global_config.BOT_NICKNAME, platform=message.message_info.platform, ), sender_info=message.message_info.user_info, message_segment=message_segment, reply=message, is_head=False, is_emoji=True, apply_set_reply_logic=True, ) await message_manager.add_message(bot_message) # 改为实例方法 (虽然它只用 message.chat_stream, 但逻辑上属于实例) async def _update_relationship(self, message: MessageRecv, response_set): """更新关系情绪""" ori_response = ",".join(response_set) stance, emotion = await self.gpt._get_emotion_tags(ori_response, message.processed_plain_text) user_info = message.message_info.user_info platform = user_info.platform await relationship_manager.calculate_update_relationship_value( user_info, platform, label=emotion, stance=stance, # 使用 self.chat_stream ) self.mood_manager.update_mood_from_emotion(emotion, global_config.mood_intensity_factor) async def _reply_interested_message(self) -> None: """ 后台任务方法,轮询当前实例关联chat的兴趣消息 通常由start_monitoring_interest()启动 """ while True: await asyncio.sleep(0.5) # 每秒检查一次 # 检查任务是否已被取消 if self._chat_task is None or self._chat_task.cancelled(): logger.info(f"[{self.stream_name}] 兴趣监控任务被取消或置空,退出") break # 获取待处理消息列表 items_to_process = list(self.interest_dict.items()) if not items_to_process: continue # 处理每条兴趣消息 for msg_id, (message, interest_value, is_mentioned) in items_to_process: try: # 处理消息 await self.normal_response( message=message, is_mentioned=is_mentioned, interested_rate=interest_value, rewind_response=False, ) except Exception as e: logger.error(f"[{self.stream_name}] 处理兴趣消息{msg_id}时出错: {e}\n{traceback.format_exc()}") finally: self.interest_dict.pop(msg_id, None) # 改为实例方法, 移除 chat 参数 async def normal_response( self, message: MessageRecv, is_mentioned: bool, interested_rate: float, rewind_response: bool = False ) -> None: # 检查收到的消息是否属于当前实例处理的 chat stream if message.chat_stream.stream_id != self.stream_id: logger.error( f"[{self.stream_name}] normal_response 收到不匹配的消息 (来自 {message.chat_stream.stream_id}),预期 {self.stream_id}。已忽略。" ) return timing_results = {} reply_probability = 1.0 if is_mentioned else 0.0 # 如果被提及,基础概率为1,否则需要意愿判断 # 意愿管理器:设置当前message信息 willing_manager.setup(message, self.chat_stream, is_mentioned, interested_rate) # 获取回复概率 is_willing = False # 仅在未被提及或基础概率不为1时查询意愿概率 if reply_probability < 1: # 简化逻辑,如果未提及 (reply_probability 为 0),则获取意愿概率 is_willing = True reply_probability = await willing_manager.get_reply_probability(message.message_info.message_id) if message.message_info.additional_config: if "maimcore_reply_probability_gain" in message.message_info.additional_config.keys(): reply_probability += message.message_info.additional_config["maimcore_reply_probability_gain"] reply_probability = min(max(reply_probability, 0), 1) # 确保概率在 0-1 之间 # 打印消息信息 mes_name = self.chat_stream.group_info.group_name if self.chat_stream.group_info else "私聊" current_time = time.strftime("%H:%M:%S", time.localtime(message.message_info.time)) # 使用 self.stream_id willing_log = f"[回复意愿:{await willing_manager.get_willing(self.stream_id):.2f}]" if is_willing else "" logger.info( f"[{current_time}][{mes_name}]" f"{message.message_info.user_info.user_nickname}:" # 使用 self.chat_stream f"{message.processed_plain_text}{willing_log}[概率:{reply_probability * 100:.1f}%]" ) do_reply = False response_set = None # 初始化 response_set if random() < reply_probability: do_reply = True # 回复前处理 await willing_manager.before_generate_reply_handle(message.message_info.message_id) with Timer("创建思考消息", timing_results): if rewind_response: thinking_id = await self._create_thinking_message(message, message.message_info.time) else: thinking_id = await self._create_thinking_message(message) logger.debug(f"[{self.stream_name}] 创建捕捉器,thinking_id:{thinking_id}") info_catcher = info_catcher_manager.get_info_catcher(thinking_id) info_catcher.catch_decide_to_response(message) try: with Timer("生成回复", timing_results): response_set = await self.gpt.generate_response( message=message, thinking_id=thinking_id, ) info_catcher.catch_after_generate_response(timing_results["生成回复"]) except Exception as e: logger.error(f"[{self.stream_name}] 回复生成出现错误:{str(e)} {traceback.format_exc()}") response_set = None # 确保出错时 response_set 为 None if not response_set: logger.info(f"[{self.stream_name}] 模型未生成回复内容") # 如果模型未生成回复,移除思考消息 container = await message_manager.get_container(self.stream_id) # 使用 self.stream_id for msg in container.messages[:]: if isinstance(msg, MessageThinking) and msg.message_info.message_id == thinking_id: container.messages.remove(msg) logger.debug(f"[{self.stream_name}] 已移除未产生回复的思考消息 {thinking_id}") break # 需要在此处也调用 not_reply_handle 和 delete 吗? # 如果是因为模型没回复,也算是一种 "未回复" await willing_manager.not_reply_handle(message.message_info.message_id) willing_manager.delete(message.message_info.message_id) return # 不执行后续步骤 logger.info(f"[{self.stream_name}] 回复内容: {response_set}") # 发送回复 (不再需要传入 chat) with Timer("消息发送", timing_results): first_bot_msg = await self._add_messages_to_manager(message, response_set, thinking_id) # 检查 first_bot_msg 是否为 None (例如思考消息已被移除的情况) if first_bot_msg: info_catcher.catch_after_response(timing_results["消息发送"], response_set, first_bot_msg) else: logger.warning(f"[{self.stream_name}] 思考消息 {thinking_id} 在发送前丢失,无法记录 info_catcher") info_catcher.done_catch() # 处理表情包 (不再需要传入 chat) with Timer("处理表情包", timing_results): await self._handle_emoji(message, response_set[0]) # 更新关系情绪 (不再需要传入 chat) with Timer("关系更新", timing_results): await self._update_relationship(message, response_set) # 回复后处理 await willing_manager.after_generate_reply_handle(message.message_info.message_id) # 输出性能计时结果 if do_reply and response_set: # 确保 response_set 不是 None timing_str = " | ".join([f"{step}: {duration:.2f}秒" for step, duration in timing_results.items()]) trigger_msg = message.processed_plain_text response_msg = " ".join(response_set) logger.info( f"[{self.stream_name}] 触发消息: {trigger_msg[:20]}... | 推理消息: {response_msg[:20]}... | 性能计时: {timing_str}" ) elif not do_reply: # 不回复处理 await willing_manager.not_reply_handle(message.message_info.message_id) # else: # do_reply is True but response_set is None (handled above) # logger.info(f"[{self.stream_name}] 决定回复但模型未生成内容。触发: {message.processed_plain_text[:20]}...") # 意愿管理器:注销当前message信息 (无论是否回复,只要处理过就删除) willing_manager.delete(message.message_info.message_id) # --- 新增:处理初始高兴趣消息的私有方法 --- async def _process_initial_interest_messages(self): """处理启动时存在于 interest_dict 中的高兴趣消息。""" if not self.interest_dict: return # 如果 interest_dict 为 None 或空,直接返回 items_to_process = list(self.interest_dict.items()) if not items_to_process: return # 没有初始消息,直接返回 logger.info(f"[{self.stream_name}] 发现 {len(items_to_process)} 条初始兴趣消息,开始处理高兴趣部分...") interest_values = [item[1][1] for item in items_to_process] # 提取兴趣值列表 messages_to_reply = [] # 需要立即回复的消息 if len(interest_values) == 1: # 如果只有一个消息,直接处理 messages_to_reply.append(items_to_process[0]) logger.info(f"[{self.stream_name}] 只有一条初始消息,直接处理。") elif len(interest_values) > 1: # 计算均值和标准差 try: mean_interest = statistics.mean(interest_values) stdev_interest = statistics.stdev(interest_values) threshold = mean_interest + stdev_interest logger.info( f"[{self.stream_name}] 初始兴趣值 均值: {mean_interest:.2f}, 标准差: {stdev_interest:.2f}, 阈值: {threshold:.2f}" ) # 找出高于阈值的消息 for item in items_to_process: msg_id, (message, interest_value, is_mentioned) = item if interest_value > threshold: messages_to_reply.append(item) logger.info(f"[{self.stream_name}] 找到 {len(messages_to_reply)} 条高于阈值的初始消息进行处理。") except statistics.StatisticsError as e: logger.error(f"[{self.stream_name}] 计算初始兴趣统计值时出错: {e},跳过初始处理。") # 处理需要回复的消息 processed_count = 0 # --- 修改:迭代前创建要处理的ID列表副本,防止迭代时修改 --- messages_to_process_initially = list(messages_to_reply) # 创建副本 # --- 新增:限制最多处理两条消息 --- messages_to_process_initially = messages_to_process_initially[:2] # --- 新增结束 --- for item in messages_to_process_initially: # 使用副本迭代 msg_id, (message, interest_value, is_mentioned) = item # --- 修改:在处理前尝试 pop,防止竞争 --- popped_item = self.interest_dict.pop(msg_id, None) if popped_item is None: logger.warning(f"[{self.stream_name}] 初始兴趣消息 {msg_id} 在处理前已被移除,跳过。") continue # 如果消息已被其他任务处理(pop),则跳过 # --- 修改结束 --- try: logger.info(f"[{self.stream_name}] 处理初始高兴趣消息 {msg_id} (兴趣值: {interest_value:.2f})") await self.normal_response( message=message, is_mentioned=is_mentioned, interested_rate=interest_value, rewind_response=True ) processed_count += 1 except Exception as e: logger.error(f"[{self.stream_name}] 处理初始兴趣消息 {msg_id} 时出错: {e}\\n{traceback.format_exc()}") # --- 新增:处理完后清空整个字典 --- logger.info( f"[{self.stream_name}] 处理了 {processed_count} 条初始高兴趣消息。现在清空所有剩余的初始兴趣消息..." ) self.interest_dict.clear() # --- 新增结束 --- logger.info( f"[{self.stream_name}] 初始高兴趣消息处理完毕,共处理 {processed_count} 条。剩余 {len(self.interest_dict)} 条待轮询。" ) # --- 新增结束 --- # 保持 staticmethod, 因为不依赖实例状态, 但需要 chat 对象来获取日志上下文 @staticmethod def _check_ban_words(text: str, chat: ChatStream, userinfo: UserInfo) -> bool: """检查消息中是否包含过滤词""" stream_name = chat_manager.get_stream_name(chat.stream_id) or chat.stream_id for word in global_config.ban_words: if word in text: logger.info( f"[{stream_name}][{chat.group_info.group_name if chat.group_info else '私聊'}]" f"{userinfo.user_nickname}:{text}" ) logger.info(f"[{stream_name}][过滤词识别] 消息中含有 '{word}',filtered") return True return False # 保持 staticmethod, 因为不依赖实例状态, 但需要 chat 对象来获取日志上下文 @staticmethod def _check_ban_regex(text: str, chat: ChatStream, userinfo: UserInfo) -> bool: """检查消息是否匹配过滤正则表达式""" stream_name = chat_manager.get_stream_name(chat.stream_id) or chat.stream_id for pattern in global_config.ban_msgs_regex: if pattern.search(text): logger.info( f"[{stream_name}][{chat.group_info.group_name if chat.group_info else '私聊'}]" f"{userinfo.user_nickname}:{text}" ) logger.info(f"[{stream_name}][正则表达式过滤] 消息匹配到 '{pattern.pattern}',filtered") return True return False # 改为实例方法, 移除 chat 参数 async def start_chat(self): """先进行异步初始化,然后启动聊天任务。""" if not self._initialized: await self.initialize() # Ensure initialized before starting tasks if self._chat_task is None or self._chat_task.done(): logger.info(f"[{self.stream_name}] 开始后台处理初始兴趣消息和轮询任务...") # Process initial messages first await self._process_initial_interest_messages() # Then start polling task polling_task = asyncio.create_task(self._reply_interested_message()) polling_task.add_done_callback(lambda t: self._handle_task_completion(t)) self._chat_task = polling_task else: logger.info(f"[{self.stream_name}] 聊天轮询任务已在运行中。") def _handle_task_completion(self, task: asyncio.Task): """任务完成回调处理""" if task is not self._chat_task: logger.warning(f"[{self.stream_name}] 收到未知任务回调") return try: if exc := task.exception(): logger.error(f"[{self.stream_name}] 任务异常: {exc}") logger.error(traceback.format_exc()) except asyncio.CancelledError: logger.debug(f"[{self.stream_name}] 任务已取消") except Exception as e: logger.error(f"[{self.stream_name}] 回调处理错误: {e}") finally: if self._chat_task is task: self._chat_task = None logger.debug(f"[{self.stream_name}] 任务清理完成") # 改为实例方法, 移除 stream_id 参数 async def stop_chat(self): """停止当前实例的兴趣监控任务。""" if self._chat_task and not self._chat_task.done(): task = self._chat_task logger.debug(f"[{self.stream_name}] 尝试取消normal聊天任务。") task.cancel() try: await task # 等待任务响应取消 except asyncio.CancelledError: logger.info(f"[{self.stream_name}] 结束一般聊天模式。") except Exception as e: # 回调函数 _handle_task_completion 会处理异常日志 logger.warning(f"[{self.stream_name}] 等待监控任务取消时捕获到异常 (可能已在回调中记录): {e}") finally: # 确保任务状态更新,即使等待出错 (回调函数也会尝试更新) if self._chat_task is task: self._chat_task = None # 清理所有未处理的思考消息 try: container = await message_manager.get_container(self.stream_id) if container: # 查找并移除所有 MessageThinking 类型的消息 thinking_messages = [msg for msg in container.messages[:] if isinstance(msg, MessageThinking)] if thinking_messages: for msg in thinking_messages: container.messages.remove(msg) logger.info(f"[{self.stream_name}] 清理了 {len(thinking_messages)} 条未处理的思考消息。") except Exception as e: logger.error(f"[{self.stream_name}] 清理思考消息时出错: {e}") logger.error(traceback.format_exc())