"""LLM API模块 提供了与LLM模型交互的功能 使用方式: from src.plugin_system.apis import llm_api models = llm_api.get_available_models() success, response, reasoning, model_name = await llm_api.generate_with_model(prompt, model_config) """ from typing import Tuple, Dict, Any from src.common.logger import get_logger from src.llm_models.utils_model import LLMRequest from src.config.config import global_config logger = get_logger("llm_api") # ============================================================================= # LLM模型API函数 # ============================================================================= def get_available_models() -> Dict[str, Any]: """获取所有可用的模型配置 Returns: Dict[str, Any]: 模型配置字典,key为模型名称,value为模型配置 """ try: if not hasattr(global_config, "model"): logger.error("[LLMAPI] 无法获取模型列表:全局配置中未找到 model 配置") return {} # 自动获取所有属性并转换为字典形式 rets = {} models = global_config.model attrs = dir(models) for attr in attrs: if not attr.startswith("__"): try: value = getattr(models, attr) if not callable(value): # 排除方法 rets[attr] = value except Exception as e: logger.debug(f"[LLMAPI] 获取属性 {attr} 失败: {e}") continue return rets except Exception as e: logger.error(f"[LLMAPI] 获取可用模型失败: {e}") return {} async def generate_with_model( prompt: str, model_config: Dict[str, Any], request_type: str = "plugin.generate", **kwargs ) -> Tuple[bool, str, str, str]: """使用指定模型生成内容 Args: prompt: 提示词 model_config: 模型配置(从 get_available_models 获取的模型配置) request_type: 请求类型标识 **kwargs: 其他模型特定参数,如temperature、max_tokens等 Returns: Tuple[bool, str, str, str]: (是否成功, 生成的内容, 推理过程, 模型名称) """ try: model_name = model_config.get("name") logger.info(f"[LLMAPI] 使用模型 {model_name} 生成内容") logger.debug(f"[LLMAPI] 完整提示词: {prompt}") llm_request = LLMRequest(model=model_config, request_type=request_type, **kwargs) response, (reasoning, model_name) = await llm_request.generate_response_async(prompt) return True, response, reasoning, model_name except Exception as e: error_msg = f"生成内容时出错: {str(e)}" logger.error(f"[LLMAPI] {error_msg}") return False, error_msg, "", ""