import time import json import asyncio from typing import List, Dict, Any, Optional, Tuple from src.common.logger import get_logger from src.config.config import global_config, model_config from src.prompt.prompt_manager import prompt_manager from src.plugin_system.apis import llm_api from src.common.database.database_model import ThinkingBack from src.memory_system.retrieval_tools import get_tool_registry, init_all_tools from src.llm_models.payload_content.message import MessageBuilder, RoleType, Message from src.chat.message_receive.chat_stream import get_chat_manager from src.bw_learner.jargon_explainer import retrieve_concepts_with_jargon logger = get_logger("memory_retrieval") THINKING_BACK_NOT_FOUND_RETENTION_SECONDS = 36000 # 未找到答案记录保留时长 THINKING_BACK_CLEANUP_INTERVAL_SECONDS = 3000 # 清理频率 _last_not_found_cleanup_ts: float = 0.0 def _cleanup_stale_not_found_thinking_back() -> None: """定期清理过期的未找到答案记录""" global _last_not_found_cleanup_ts now = time.time() if now - _last_not_found_cleanup_ts < THINKING_BACK_CLEANUP_INTERVAL_SECONDS: return threshold_time = now - THINKING_BACK_NOT_FOUND_RETENTION_SECONDS try: deleted_rows = ( ThinkingBack.delete() .where((ThinkingBack.found_answer == 0) & (ThinkingBack.update_time < threshold_time)) .execute() ) if deleted_rows: logger.info(f"清理过期的未找到答案thinking_back记录 {deleted_rows} 条") _last_not_found_cleanup_ts = now except Exception as e: logger.error(f"清理未找到答案的thinking_back记录失败: {e}") def init_memory_retrieval_sys(): """初始化记忆检索相关工具""" # 注册所有工具 init_all_tools() def _log_conversation_messages( conversation_messages: List[Message], head_prompt: Optional[str] = None, final_status: Optional[str] = None, ) -> None: """输出对话消息列表的日志 Args: conversation_messages: 对话消息列表 head_prompt: 第一条系统消息(head_prompt)的内容,可选 final_status: 最终结果状态描述(例如:找到答案/未找到答案),可选 """ if not global_config.debug.show_memory_prompt: return log_lines: List[str] = [] # 如果有head_prompt,先添加为第一条消息 if head_prompt: msg_info = "========================================\n[消息 1] 角色: System\n-----------------------------" msg_info += f"\n{head_prompt}" log_lines.append(msg_info) start_idx = 2 else: start_idx = 1 if not conversation_messages and not head_prompt: return for idx, msg in enumerate(conversation_messages, start_idx): role_name = msg.role.value if hasattr(msg.role, "value") else str(msg.role) # 构建单条消息的日志信息 # msg_info = f"\n========================================\n[消息 {idx}] 角色: {role_name} 内容类型: {content_type}\n-----------------------------" msg_info = ( f"\n========================================\n[消息 {idx}] 角色: {role_name}\n-----------------------------" ) # if full_content: # msg_info += f"\n{full_content}" if msg.content: msg_info += f"\n{msg.content}" if msg.tool_calls: msg_info += f"\n 工具调用: {len(msg.tool_calls)}个" for tool_call in msg.tool_calls: msg_info += f"\n - {tool_call.func_name}: {json.dumps(tool_call.args, ensure_ascii=False)}" # if msg.tool_call_id: # msg_info += f"\n 工具调用ID: {msg.tool_call_id}" log_lines.append(msg_info) total_count = len(conversation_messages) + (1 if head_prompt else 0) log_text = f"消息列表 (共{total_count}条):{''.join(log_lines)}" if final_status: log_text += f"\n\n[最终结果] {final_status}" logger.info(log_text) async def _react_agent_solve_question( chat_id: str, max_iterations: int = 5, timeout: float = 30.0, initial_info: str = "", chat_history: str = "", ) -> Tuple[bool, str, List[Dict[str, Any]], bool]: """使用ReAct架构的Agent来解决问题 Args: chat_id: 聊天ID max_iterations: 最大迭代次数 timeout: 超时时间(秒) initial_info: 初始信息,将作为collected_info的初始值 chat_history: 聊天记录,将传递给 ReAct Agent prompt Returns: Tuple[bool, str, List[Dict[str, Any]], bool]: (是否找到答案, 答案内容, 思考步骤列表, 是否超时) """ start_time = time.time() collected_info = initial_info if initial_info else "" # 构造日志前缀:[聊天流名称],用于在日志中标识聊天流 try: chat_name = get_chat_manager().get_stream_name(chat_id) or chat_id except Exception: chat_name = chat_id react_log_prefix = f"[{chat_name}] " thinking_steps = [] is_timeout = False conversation_messages: List[Message] = [] first_head_prompt: Optional[str] = None # 保存第一次使用的head_prompt(用于日志显示) last_tool_name: Optional[str] = None # 记录最后一次使用的工具名称 # 使用 while 循环,支持额外迭代 iteration = 0 max_iterations_with_extra = max_iterations while iteration < max_iterations_with_extra: # 检查超时 if time.time() - start_time > timeout: logger.warning(f"ReAct Agent超时,已迭代{iteration}次") is_timeout = True break # 获取工具注册器 tool_registry = get_tool_registry() # 获取bot_name bot_name = global_config.bot.nickname # 获取当前时间 time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) # 计算剩余迭代次数 current_iteration = iteration + 1 remaining_iterations = max_iterations - current_iteration # 提取函数调用中参数的值,支持单引号和双引号 def extract_quoted_content(text, func_name, param_name): """从文本中提取函数调用中参数的值,支持单引号和双引号 Args: text: 要搜索的文本 func_name: 函数名,如 'return_information' param_name: 参数名,如 'information' Returns: 提取的参数值,如果未找到则返回None """ if not text: return None # 查找函数调用位置(不区分大小写) func_pattern = func_name.lower() text_lower = text.lower() func_pos = text_lower.find(func_pattern) if func_pos == -1: return None # 查找参数名和等号 param_pattern = f"{param_name}=" param_pos = text_lower.find(param_pattern, func_pos) if param_pos == -1: return None # 跳过参数名、等号和空白 start_pos = param_pos + len(param_pattern) while start_pos < len(text) and text[start_pos] in " \t\n": start_pos += 1 if start_pos >= len(text): return None # 确定引号类型 quote_char = text[start_pos] if quote_char not in ['"', "'"]: return None # 查找匹配的结束引号(考虑转义) end_pos = start_pos + 1 while end_pos < len(text): if text[end_pos] == quote_char: # 检查是否是转义的引号 if end_pos > start_pos + 1 and text[end_pos - 1] == "\\": end_pos += 1 continue # 找到匹配的引号 content = text[start_pos + 1 : end_pos] # 处理转义字符 content = content.replace('\\"', '"').replace("\\'", "'").replace("\\\\", "\\") return content end_pos += 1 return None # 正常迭代:使用head_prompt决定调用哪些工具(包含return_information工具) tool_definitions = tool_registry.get_tool_definitions() # tool_names = [tool_def["name"] for tool_def in tool_definitions] # logger.debug(f"ReAct Agent 第 {iteration + 1} 次迭代,问题: {question}|可用工具: {', '.join(tool_names)} (共{len(tool_definitions)}个)") # head_prompt应该只构建一次,使用初始的collected_info,后续迭代都复用同一个 if first_head_prompt is None: # 第一次构建,使用初始的collected_info(即initial_info) initial_collected_info = initial_info if initial_info else "" # 根据配置选择使用哪个 prompt prompt_name = ( "memory_retrieval_react_prompt_head_lpmm" if global_config.experimental.lpmm_memory else "memory_retrieval_react_prompt_head" ) first_head_prompt_template = prompt_manager.get_prompt(prompt_name) first_head_prompt_template.add_context("bot_name", bot_name) first_head_prompt_template.add_context("time_now", time_now) first_head_prompt_template.add_context("chat_history", chat_history) first_head_prompt_template.add_context("collected_info", initial_collected_info) first_head_prompt_template.add_context("current_iteration", str(current_iteration)) first_head_prompt_template.add_context("remaining_iterations", str(remaining_iterations)) first_head_prompt_template.add_context("max_iterations", str(max_iterations)) first_head_prompt = await prompt_manager.render_prompt(first_head_prompt_template) # 后续迭代都复用第一次构建的head_prompt head_prompt = first_head_prompt def message_factory( _client, *, _head_prompt: str = head_prompt, _conversation_messages: List[Message] = conversation_messages, ) -> List[Message]: messages: List[Message] = [] system_builder = MessageBuilder() system_builder.set_role(RoleType.System) system_builder.add_text_content(_head_prompt) messages.append(system_builder.build()) messages.extend(_conversation_messages) return messages ( success, response, reasoning_content, model_name, tool_calls, ) = await llm_api.generate_with_model_with_tools_by_message_factory( message_factory, model_config=model_config.model_task_config.tool_use, tool_options=tool_definitions, request_type="memory.react", ) # logger.info( # f"ReAct Agent 第 {iteration + 1} 次迭代 模型: {model_name} ,调用工具数量: {len(tool_calls) if tool_calls else 0} ,调用工具响应: {response}" # ) if not success: logger.error(f"ReAct Agent LLM调用失败: {response}") break # 注意:这里会检查return_information工具调用,如果检测到return_information工具,会根据information参数决定返回信息或退出查询 assistant_message: Optional[Message] = None if tool_calls: assistant_builder = MessageBuilder() assistant_builder.set_role(RoleType.Assistant) if response and response.strip(): assistant_builder.add_text_content(response) assistant_builder.set_tool_calls(tool_calls) assistant_message = assistant_builder.build() elif response and response.strip(): assistant_builder = MessageBuilder() assistant_builder.set_role(RoleType.Assistant) assistant_builder.add_text_content(response) assistant_message = assistant_builder.build() # 记录思考步骤 step = {"iteration": iteration + 1, "thought": response, "actions": [], "observations": []} if assistant_message: conversation_messages.append(assistant_message) # 记录思考过程到collected_info中 if reasoning_content or response: thought_summary = reasoning_content or (response[:200] if response else "") if thought_summary: collected_info += f"\n[思考] {thought_summary}\n" # 处理工具调用 if not tool_calls: # 如果没有工具调用,检查响应文本中是否包含return_information函数调用格式或JSON格式 if response and response.strip(): # 首先尝试解析JSON格式的return_information def parse_json_return_information(text: str): """从文本中解析JSON格式的return_information,返回information字符串,如果未找到则返回None""" if not text: return None, None try: # 尝试提取JSON对象(可能包含在代码块中或直接是JSON) json_text = text.strip() # 如果包含代码块标记,提取JSON部分 if "```json" in json_text: start = json_text.find("```json") + 7 end = json_text.find("```", start) if end != -1: json_text = json_text[start:end].strip() elif "```" in json_text: start = json_text.find("```") + 3 end = json_text.find("```", start) if end != -1: json_text = json_text[start:end].strip() # 尝试解析JSON data = json.loads(json_text) # 检查是否包含return_information字段 if isinstance(data, dict) and "return_information" in data: information = data.get("information", "") return information except (json.JSONDecodeError, ValueError, TypeError): # 如果JSON解析失败,尝试在文本中查找JSON对象 try: # 查找第一个 { 和最后一个 } 之间的内容(更健壮的JSON提取) first_brace = text.find("{") if first_brace != -1: # 从第一个 { 开始,找到匹配的 } brace_count = 0 json_end = -1 for i in range(first_brace, len(text)): if text[i] == "{": brace_count += 1 elif text[i] == "}": brace_count -= 1 if brace_count == 0: json_end = i + 1 break if json_end != -1: json_text = text[first_brace:json_end] data = json.loads(json_text) if isinstance(data, dict) and "return_information" in data: information = data.get("information", "") return information except (json.JSONDecodeError, ValueError, TypeError): pass return None # 尝试从文本中解析return_information函数调用 def parse_return_information_from_text(text: str): """从文本中解析return_information函数调用,返回information字符串,如果未找到则返回None""" if not text: return None # 查找return_information函数调用位置(不区分大小写) func_pattern = "return_information" text_lower = text.lower() func_pos = text_lower.find(func_pattern) if func_pos == -1: return None # 解析information参数(字符串,使用extract_quoted_content) information = extract_quoted_content(text, "return_information", "information") # 如果information存在(即使是空字符串),也返回它 return information # 首先尝试解析JSON格式 parsed_information_json = parse_json_return_information(response) is_json_format = parsed_information_json is not None # 如果JSON解析成功,使用JSON结果 if is_json_format: parsed_information = parsed_information_json else: # 如果JSON解析失败,尝试解析函数调用格式 parsed_information = parse_return_information_from_text(response) if parsed_information is not None or is_json_format: # 检测到return_information格式(可能是JSON格式或函数调用格式) format_type = "JSON格式" if is_json_format else "函数调用格式" # 返回信息(即使为空字符串也返回) step["actions"].append( { "action_type": "return_information", "action_params": {"information": parsed_information or ""}, } ) if parsed_information and parsed_information.strip(): step["observations"] = [f"检测到return_information{format_type}调用,返回信息"] thinking_steps.append(step) logger.info( f"{react_log_prefix}第 {iteration + 1} 次迭代 通过return_information{format_type}返回信息: {parsed_information[:100]}..." ) _log_conversation_messages( conversation_messages, head_prompt=first_head_prompt, final_status=f"返回信息:{parsed_information}", ) return True, parsed_information, thinking_steps, False else: # 信息为空,直接退出查询 step["observations"] = [f"检测到return_information{format_type}调用,信息为空"] thinking_steps.append(step) logger.info( f"{react_log_prefix}第 {iteration + 1} 次迭代 通过return_information{format_type}判断信息为空" ) _log_conversation_messages( conversation_messages, head_prompt=first_head_prompt, final_status="信息为空:通过return_information文本格式判断信息为空", ) return False, "", thinking_steps, False # 如果没有检测到return_information格式,记录思考过程,继续下一轮迭代 step["observations"] = [f"思考完成,但未调用工具。响应: {response}"] logger.info(f"{react_log_prefix}第 {iteration + 1} 次迭代 思考完成但未调用工具: {response}") collected_info += f"思考: {response}" else: logger.warning(f"{react_log_prefix}第 {iteration + 1} 次迭代 无工具调用且无响应") step["observations"] = ["无响应且无工具调用"] thinking_steps.append(step) iteration += 1 # 在continue之前增加迭代计数,避免跳过iteration += 1 continue # 处理工具调用 # 首先检查是否有return_information工具调用,如果有则立即返回,不再处理其他工具 return_information_info = None for tool_call in tool_calls: tool_name = tool_call.func_name tool_args = tool_call.args or {} if tool_name == "return_information": return_information_info = tool_args.get("information", "") # 返回信息(即使为空也返回) step["actions"].append( { "action_type": "return_information", "action_params": {"information": return_information_info}, } ) if return_information_info and return_information_info.strip(): # 有信息,返回 step["observations"] = ["检测到return_information工具调用,返回信息"] thinking_steps.append(step) logger.info( f"{react_log_prefix}第 {iteration + 1} 次迭代 通过return_information工具返回信息: {return_information_info}" ) _log_conversation_messages( conversation_messages, head_prompt=first_head_prompt, final_status=f"返回信息:{return_information_info}", ) return True, return_information_info, thinking_steps, False else: # 信息为空,直接退出查询 step["observations"] = ["检测到return_information工具调用,信息为空"] thinking_steps.append(step) logger.info(f"{react_log_prefix}第 {iteration + 1} 次迭代 通过return_information工具判断信息为空") _log_conversation_messages( conversation_messages, head_prompt=first_head_prompt, final_status="信息为空:通过return_information工具判断信息为空", ) return False, "", thinking_steps, False # 如果没有return_information工具调用,继续处理其他工具 tool_tasks = [] for i, tool_call in enumerate(tool_calls): tool_name = tool_call.func_name tool_args = tool_call.args or {} logger.debug( f"{react_log_prefix}第 {iteration + 1} 次迭代 工具调用 {i + 1}/{len(tool_calls)}: {tool_name}({tool_args})" ) # 跳过return_information工具调用(已经在上面处理过了) if tool_name == "return_information": continue # 记录最后一次使用的工具名称(用于判断是否需要额外迭代) last_tool_name = tool_name # 普通工具调用 tool = tool_registry.get_tool(tool_name) if tool: # 准备工具参数(需要添加chat_id如果工具需要) import inspect sig = inspect.signature(tool.execute_func) tool_params = tool_args.copy() if "chat_id" in sig.parameters: tool_params["chat_id"] = chat_id # 创建异步任务 async def execute_single_tool(tool_instance, params, tool_name_str, iter_num): try: observation = await tool_instance.execute(**params) param_str = ", ".join([f"{k}={v}" for k, v in params.items() if k != "chat_id"]) return f"查询{tool_name_str}({param_str})的结果:{observation}" except Exception as e: error_msg = f"工具执行失败: {str(e)}" logger.error(f"{react_log_prefix}第 {iter_num + 1} 次迭代 工具 {tool_name_str} {error_msg}") return f"查询{tool_name_str}失败: {error_msg}" tool_tasks.append(execute_single_tool(tool, tool_params, tool_name, iteration)) step["actions"].append({"action_type": tool_name, "action_params": tool_args}) else: error_msg = f"未知的工具类型: {tool_name}" logger.warning( f"{react_log_prefix}第 {iteration + 1} 次迭代 工具 {i + 1}/{len(tool_calls)} {error_msg}" ) tool_tasks.append(asyncio.create_task(asyncio.sleep(0, result=f"查询{tool_name}失败: {error_msg}"))) # 并行执行所有工具 if tool_tasks: observations = await asyncio.gather(*tool_tasks, return_exceptions=True) # 处理执行结果 for i, (tool_call_item, observation) in enumerate(zip(tool_calls, observations, strict=False)): if isinstance(observation, Exception): observation = f"工具执行异常: {str(observation)}" logger.error(f"{react_log_prefix}第 {iteration + 1} 次迭代 工具 {i + 1} 执行异常: {observation}") observation_text = observation if isinstance(observation, str) else str(observation) stripped_observation = observation_text.strip() step["observations"].append(observation_text) collected_info += f"\n{observation_text}\n" if stripped_observation: # 不再自动检测工具输出中的jargon,改为通过 query_words 工具主动查询 tool_builder = MessageBuilder() tool_builder.set_role(RoleType.Tool) tool_builder.add_text_content(observation_text) tool_builder.add_tool_call(tool_call_item.call_id) conversation_messages.append(tool_builder.build()) thinking_steps.append(step) # 检查是否需要额外迭代:如果最后一次使用的工具是 search_chat_history 且达到最大迭代次数,额外增加一回合 if iteration + 1 >= max_iterations and last_tool_name == "search_chat_history" and not is_timeout: max_iterations_with_extra = max_iterations + 1 logger.info( f"{react_log_prefix}达到最大迭代次数(已迭代{iteration + 1}次),最后一次使用工具为 search_chat_history,额外增加一回合尝试" ) iteration += 1 # 正常迭代结束后,如果达到最大迭代次数或超时,执行最终评估 # 最终评估单独处理,不算在迭代中 should_do_final_evaluation = False if is_timeout: should_do_final_evaluation = True logger.warning(f"{react_log_prefix}超时,已迭代{iteration}次,进入最终评估") elif iteration >= max_iterations: should_do_final_evaluation = True logger.info(f"{react_log_prefix}达到最大迭代次数(已迭代{iteration}次),进入最终评估") if should_do_final_evaluation: # 获取必要变量用于最终评估 tool_registry = get_tool_registry() bot_name = global_config.bot.nickname time_now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) current_iteration = iteration + 1 remaining_iterations = 0 # 提取函数调用中参数的值,支持单引号和双引号 def extract_quoted_content(text, func_name, param_name): """从文本中提取函数调用中参数的值,支持单引号和双引号 Args: text: 要搜索的文本 func_name: 函数名,如 'return_information' param_name: 参数名,如 'information' Returns: 提取的参数值,如果未找到则返回None """ if not text: return None # 查找函数调用位置(不区分大小写) func_pattern = func_name.lower() text_lower = text.lower() func_pos = text_lower.find(func_pattern) if func_pos == -1: return None # 查找参数名和等号 param_pattern = f"{param_name}=" param_pos = text_lower.find(param_pattern, func_pos) if param_pos == -1: return None # 跳过参数名、等号和空白 start_pos = param_pos + len(param_pattern) while start_pos < len(text) and text[start_pos] in " \t\n": start_pos += 1 if start_pos >= len(text): return None # 确定引号类型 quote_char = text[start_pos] if quote_char not in ['"', "'"]: return None # 查找匹配的结束引号(考虑转义) end_pos = start_pos + 1 while end_pos < len(text): if text[end_pos] == quote_char: # 检查是否是转义的引号 if end_pos > start_pos + 1 and text[end_pos - 1] == "\\": end_pos += 1 continue # 找到匹配的引号 content = text[start_pos + 1 : end_pos] # 处理转义字符 content = content.replace('\\"', '"').replace("\\'", "'").replace("\\\\", "\\") return content end_pos += 1 return None # 执行最终评估 evaluation_prompt_template = prompt_manager.get_prompt("memory_retrieval_react_final_prompt") evaluation_prompt_template.add_context("bot_name", bot_name) evaluation_prompt_template.add_context("time_now", time_now) evaluation_prompt_template.add_context("chat_history", chat_history) evaluation_prompt_template.add_context("collected_info", collected_info if collected_info else "暂无信息") evaluation_prompt_template.add_context("current_iteration", str(current_iteration)) evaluation_prompt_template.add_context("remaining_iterations", str(remaining_iterations)) evaluation_prompt_template.add_context("max_iterations", str(max_iterations)) evaluation_prompt = await prompt_manager.render_prompt(evaluation_prompt_template) ( eval_success, eval_response, eval_reasoning_content, eval_model_name, eval_tool_calls, ) = await llm_api.generate_with_model_with_tools( evaluation_prompt, model_config=model_config.model_task_config.tool_use, tool_options=[], # 最终评估阶段不提供工具 request_type="memory.react.final", ) if not eval_success: logger.error(f"ReAct Agent 最终评估阶段 LLM调用失败: {eval_response}") _log_conversation_messages( conversation_messages, head_prompt=first_head_prompt, final_status="未找到答案:最终评估阶段LLM调用失败", ) return False, "最终评估阶段LLM调用失败", thinking_steps, is_timeout if global_config.debug.show_memory_prompt: logger.info(f"{react_log_prefix}最终评估Prompt: {evaluation_prompt}") logger.info(f"{react_log_prefix}最终评估响应: {eval_response}") # 从最终评估响应中提取return_information return_information_content = None if eval_response: return_information_content = extract_quoted_content(eval_response, "return_information", "information") # 如果提取到信息,返回(无论是否超时,都视为成功完成) if return_information_content is not None: eval_step = { "iteration": current_iteration, "thought": f"[最终评估] {eval_response}", "actions": [ {"action_type": "return_information", "action_params": {"information": return_information_content}} ], "observations": ["最终评估阶段检测到return_information"], } thinking_steps.append(eval_step) if return_information_content and return_information_content.strip(): logger.info(f"ReAct Agent 最终评估阶段返回信息: {return_information_content}") _log_conversation_messages( conversation_messages, head_prompt=first_head_prompt, final_status=f"返回信息:{return_information_content}", ) return True, return_information_content, thinking_steps, False else: logger.info("ReAct Agent 最终评估阶段判断信息为空") _log_conversation_messages( conversation_messages, head_prompt=first_head_prompt, final_status="信息为空:最终评估阶段判断信息为空", ) return False, "", thinking_steps, False # 如果没有明确判断,视为not_enough_info,返回空字符串(不返回任何信息) eval_step = { "iteration": current_iteration, "thought": f"[最终评估] {eval_response}", "actions": [{"action_type": "return_information", "action_params": {"information": ""}}], "observations": ["已到达最大迭代次数,信息为空"], } thinking_steps.append(eval_step) logger.info("ReAct Agent 已到达最大迭代次数,信息为空") _log_conversation_messages( conversation_messages, head_prompt=first_head_prompt, final_status="未找到答案:已到达最大迭代次数,无法找到答案", ) return False, "", thinking_steps, is_timeout # 如果正常迭代过程中提前找到答案返回,不会到达这里 # 如果正常迭代结束但没有触发最终评估(理论上不应该发生),直接返回 logger.warning("ReAct Agent正常迭代结束,但未触发最终评估") _log_conversation_messages( conversation_messages, head_prompt=first_head_prompt, final_status="未找到答案:正常迭代结束", ) return False, "", thinking_steps, is_timeout def _get_recent_query_history(chat_id: str, time_window_seconds: float = 600.0) -> str: """获取最近一段时间内的查询历史(用于避免重复查询) Args: chat_id: 聊天ID time_window_seconds: 时间窗口(秒),默认10分钟 Returns: str: 格式化的查询历史字符串 """ try: current_time = time.time() start_time = current_time - time_window_seconds # 查询最近时间窗口内的记录,按更新时间倒序 records = ( ThinkingBack.select() .where((ThinkingBack.chat_id == chat_id) & (ThinkingBack.update_time >= start_time)) .order_by(ThinkingBack.update_time.desc()) .limit(5) # 最多返回5条最近的记录 ) if not records.exists(): return "" history_lines = [] history_lines.append("最近已查询的问题和结果:") for record in records: status = "✓ 已找到答案" if record.found_answer else "✗ 未找到答案" answer_preview = "" # 只有找到答案时才显示答案内容 if record.found_answer and record.answer: # 截取答案前100字符 answer_preview = record.answer[:100] if len(record.answer) > 100: answer_preview += "..." history_lines.append(f"- 问题:{record.question}") history_lines.append(f" 状态:{status}") if answer_preview: history_lines.append(f" 答案:{answer_preview}") history_lines.append("") # 空行分隔 return "\n".join(history_lines) except Exception as e: logger.error(f"获取查询历史失败: {e}") return "" def _get_recent_found_answers(chat_id: str, time_window_seconds: float = 600.0) -> List[str]: """获取最近一段时间内已找到答案的查询记录(用于返回给 replyer) Args: chat_id: 聊天ID time_window_seconds: 时间窗口(秒),默认10分钟 Returns: List[str]: 格式化的答案列表,每个元素格式为 "问题:xxx\n答案:xxx" """ try: current_time = time.time() start_time = current_time - time_window_seconds # 查询最近时间窗口内已找到答案的记录,按更新时间倒序 records = ( ThinkingBack.select() .where( (ThinkingBack.chat_id == chat_id) & (ThinkingBack.update_time >= start_time) & (ThinkingBack.found_answer == 1) & (ThinkingBack.answer.is_null(False)) & (ThinkingBack.answer != "") ) .order_by(ThinkingBack.update_time.desc()) .limit(3) # 最多返回5条最近的记录 ) if not records.exists(): return [] found_answers = [] for record in records: if record.answer: found_answers.append(f"问题:{record.question}\n答案:{record.answer}") return found_answers except Exception as e: logger.error(f"获取最近已找到答案的记录失败: {e}") return [] def _store_thinking_back( chat_id: str, question: str, context: str, found_answer: bool, answer: str, thinking_steps: List[Dict[str, Any]] ) -> None: """存储或更新思考过程到数据库(如果已存在则更新,否则创建) Args: chat_id: 聊天ID question: 问题 context: 上下文信息 found_answer: 是否找到答案 answer: 答案内容 thinking_steps: 思考步骤列表 """ try: now = time.time() # 先查询是否已存在相同chat_id和问题的记录 existing = ( ThinkingBack.select() .where((ThinkingBack.chat_id == chat_id) & (ThinkingBack.question == question)) .order_by(ThinkingBack.update_time.desc()) .limit(1) ) if existing.exists(): # 更新现有记录 record = existing.get() record.context = context record.found_answer = found_answer record.answer = answer record.thinking_steps = json.dumps(thinking_steps, ensure_ascii=False) record.update_time = now record.save() logger.info(f"已更新思考过程到数据库,问题: {question[:50]}...") else: # 创建新记录 ThinkingBack.create( chat_id=chat_id, question=question, context=context, found_answer=found_answer, answer=answer, thinking_steps=json.dumps(thinking_steps, ensure_ascii=False), create_time=now, update_time=now, ) # logger.info(f"已创建思考过程到数据库,问题: {question[:50]}...") except Exception as e: logger.error(f"存储思考过程失败: {e}") async def _process_memory_retrieval( chat_id: str, context: str, initial_info: str = "", max_iterations: Optional[int] = None, chat_history: str = "", ) -> Optional[str]: """处理记忆检索 Args: chat_id: 聊天ID context: 上下文信息 initial_info: 初始信息,将传递给ReAct Agent max_iterations: 最大迭代次数 chat_history: 聊天记录,将传递给 ReAct Agent Returns: Optional[str]: 如果找到答案,返回答案内容,否则返回None """ _cleanup_stale_not_found_thinking_back() question_initial_info = initial_info or "" # 直接使用ReAct Agent进行记忆检索 # 如果未指定max_iterations,使用配置的默认值 if max_iterations is None: max_iterations = global_config.memory.max_agent_iterations found_answer, answer, thinking_steps, is_timeout = await _react_agent_solve_question( chat_id=chat_id, max_iterations=max_iterations, timeout=global_config.memory.agent_timeout_seconds, initial_info=question_initial_info, chat_history=chat_history, ) # 不再存储到数据库,直接返回答案 if is_timeout: logger.info("ReAct Agent超时,不返回结果") if found_answer and answer: return answer return None async def build_memory_retrieval_prompt( message: str, sender: str, target: str, chat_stream, think_level: int = 1, unknown_words: Optional[List[str]] = None, ) -> str: """构建记忆检索提示 Args: message: 聊天历史记录 sender: 发送者名称 target: 目标消息内容 chat_stream: 聊天流对象 think_level: 思考深度等级 unknown_words: Planner 提供的未知词语列表,优先使用此列表而不是从聊天记录匹配 Returns: str: 记忆检索结果字符串 """ start_time = time.time() # 构造日志前缀:[聊天流名称],用于在日志中标识聊天流(优先群名称/用户昵称) try: group_info = chat_stream.group_info user_info = chat_stream.user_info # 群聊优先使用群名称 if group_info is not None and getattr(group_info, "group_name", None): stream_name = group_info.group_name.strip() or str(group_info.group_id) # 私聊使用用户昵称 elif user_info is not None and getattr(user_info, "user_nickname", None): stream_name = user_info.user_nickname.strip() or str(user_info.user_id) # 兜底使用 stream_id else: stream_name = chat_stream.stream_id except Exception: stream_name = chat_stream.stream_id log_prefix = f"[{stream_name}] " if stream_name else "" logger.info(f"{log_prefix}检测是否需要回忆,元消息:{message[:30]}...,消息长度: {len(message)}") try: chat_id = chat_stream.stream_id # 初始阶段:使用 Planner 提供的 unknown_words 进行检索(如果提供) initial_info = "" if unknown_words and len(unknown_words) > 0: # 清理和去重 unknown_words cleaned_concepts = [] for word in unknown_words: if isinstance(word, str): cleaned = word.strip() if cleaned: cleaned_concepts.append(cleaned) if cleaned_concepts: # 对匹配到的概念进行jargon检索,作为初始信息 concept_info = await retrieve_concepts_with_jargon(cleaned_concepts, chat_id) if concept_info: initial_info += concept_info logger.info( f"{log_prefix}使用 Planner 提供的 unknown_words,共 {len(cleaned_concepts)} 个概念,检索结果: {concept_info[:100]}..." ) else: logger.debug(f"{log_prefix}unknown_words 检索未找到任何结果") # 直接使用 ReAct Agent 进行记忆检索(跳过问题生成步骤) base_max_iterations = global_config.memory.max_agent_iterations # 根据think_level调整迭代次数:think_level=1时不变,think_level=0时减半 if think_level == 0: max_iterations = max(1, base_max_iterations // 2) # 至少为1 else: max_iterations = base_max_iterations timeout_seconds = global_config.memory.agent_timeout_seconds logger.debug( f"{log_prefix}直接使用 ReAct Agent 进行记忆检索,think_level={think_level},设置最大迭代次数: {max_iterations}(基础值: {base_max_iterations}),超时时间: {timeout_seconds}秒" ) # 直接调用 ReAct Agent 处理记忆检索 try: result = await _process_memory_retrieval( chat_id=chat_id, context=message, initial_info=initial_info, max_iterations=max_iterations, chat_history=message, ) except Exception as e: logger.error(f"{log_prefix}处理记忆检索时发生异常: {e}") result = None end_time = time.time() if result: logger.info(f"{log_prefix}记忆检索成功,耗时: {(end_time - start_time):.3f}秒") return f"你回忆起了以下信息:\n{result}\n如果与回复内容相关,可以参考这些回忆的信息。\n" else: logger.debug(f"{log_prefix}记忆检索未找到相关信息") return "" except Exception as e: logger.error(f"{log_prefix}记忆检索时发生异常: {str(e)}") return ""