import json # <--- 确保导入 json import traceback from typing import List, Dict, Any, Optional from rich.traceback import install from src.llm_models.utils_model import LLMRequest from src.config.config import global_config from src.chat.focus_chat.info.info_base import InfoBase from src.chat.focus_chat.info.obs_info import ObsInfo from src.chat.focus_chat.info.cycle_info import CycleInfo from src.chat.focus_chat.info.action_info import ActionInfo from src.chat.focus_chat.info.structured_info import StructuredInfo from src.chat.focus_chat.info.self_info import SelfInfo from src.chat.focus_chat.info.relation_info import RelationInfo from src.common.logger import get_logger from src.chat.utils.prompt_builder import Prompt, global_prompt_manager from src.individuality.individuality import get_individuality from src.chat.focus_chat.planners.action_manager import ActionManager from json_repair import repair_json from src.chat.focus_chat.planners.base_planner import BasePlanner from datetime import datetime logger = get_logger("planner") install(extra_lines=3) def init_prompt(): Prompt( """ 你的自我认知是: {self_info_block} 请记住你的性格,身份和特点。 {extra_info_block} {memory_str} {time_block} 你是群内的一员,你现在正在参与群内的闲聊,以下是群内的聊天内容: {chat_content_block} {relation_info_block} {cycle_info_block} {moderation_prompt} 注意,除了下面动作选项之外,你在群聊里不能做其他任何事情,这是你能力的边界,现在请你选择合适的action: {action_options_text} 请以动作的输出要求,以严格的 JSON 格式输出,且仅包含 JSON 内容。 请输出你提取的JSON,不要有任何其他文字或解释: """, "simple_planner_prompt", ) Prompt( """ 动作:{action_name} 该动作的描述:{action_description} 使用该动作的场景: {action_require} 输出要求: {{ "action": "{action_name}",{action_parameters} }} """, "action_prompt", ) class ActionPlanner(BasePlanner): def __init__(self, log_prefix: str, action_manager: ActionManager): super().__init__(log_prefix, action_manager) # LLM规划器配置 self.planner_llm = LLMRequest( model=global_config.model.planner, request_type="focus.planner", # 用于动作规划 ) self.utils_llm = LLMRequest( model=global_config.model.utils_small, request_type="focus.planner", # 用于动作规划 ) async def plan(self, all_plan_info: List[InfoBase], running_memorys: List[Dict[str, Any]]) -> Dict[str, Any]: """ 规划器 (Planner): 使用LLM根据上下文决定做出什么动作。 参数: all_plan_info: 所有计划信息 running_memorys: 回忆信息 """ action = "no_reply" # 默认动作 reasoning = "规划器初始化默认" action_data = {} try: # 获取观察信息 extra_info: list[str] = [] # 设置默认值 nickname_str = "" for nicknames in global_config.bot.alias_names: nickname_str += f"{nicknames}," name_block = f"你的名字是{global_config.bot.nickname},你的昵称有{nickname_str},有人也会用这些昵称称呼你。" personality_block = get_individuality().get_personality_prompt(x_person=2, level=2) identity_block = get_individuality().get_identity_prompt(x_person=2, level=2) self_info = name_block + personality_block + identity_block current_mind = "你思考了很久,没有想清晰要做什么" cycle_info = "" structured_info = "" extra_info = [] observed_messages = [] observed_messages_str = "" chat_type = "group" is_group_chat = True relation_info = "" for info in all_plan_info: if isinstance(info, ObsInfo): observed_messages = info.get_talking_message() observed_messages_str = info.get_talking_message_str_truncate() chat_type = info.get_chat_type() is_group_chat = chat_type == "group" elif isinstance(info, CycleInfo): cycle_info = info.get_observe_info() elif isinstance(info, SelfInfo): self_info = info.get_processed_info() elif isinstance(info, RelationInfo): relation_info = info.get_processed_info() elif isinstance(info, StructuredInfo): structured_info = info.get_processed_info() else: extra_info.append(info.get_processed_info()) # elif not isinstance(info, ActionInfo): # 跳过已处理的ActionInfo # extra_info.append(info.get_processed_info()) # 获取经过modify_actions处理后的最终可用动作集 # 注意:动作的激活判定现在在主循环的modify_actions中完成 # 使用Focus模式过滤动作 current_available_actions_dict = self.action_manager.get_using_actions_for_mode("focus") # 获取完整的动作信息 all_registered_actions = self.action_manager.get_registered_actions() current_available_actions = {} for action_name in current_available_actions_dict.keys(): if action_name in all_registered_actions: current_available_actions[action_name] = all_registered_actions[action_name] else: logger.warning(f"{self.log_prefix}使用中的动作 {action_name} 未在已注册动作中找到") # 如果没有可用动作或只有no_reply动作,直接返回no_reply if not current_available_actions or ( len(current_available_actions) == 1 and "no_reply" in current_available_actions ): action = "no_reply" reasoning = "没有可用的动作" if not current_available_actions else "只有no_reply动作可用,跳过规划" logger.info(f"{self.log_prefix}{reasoning}") self.action_manager.restore_actions() logger.debug( f"{self.log_prefix}[focus]沉默后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}" ) return { "action_result": {"action_type": action, "action_data": action_data, "reasoning": reasoning}, "current_mind": current_mind, "observed_messages": observed_messages, } # --- 构建提示词 (调用修改后的 PromptBuilder 方法) --- prompt = await self.build_planner_prompt( self_info_block=self_info, relation_info_block=relation_info, is_group_chat=is_group_chat, # <-- Pass HFC state chat_target_info=None, observed_messages_str=observed_messages_str, # <-- Pass local variable structured_info=structured_info, # <-- Pass SubMind info current_available_actions=current_available_actions, # <-- Pass determined actions cycle_info=cycle_info, # <-- Pass cycle info extra_info=extra_info, running_memorys=running_memorys, ) # --- 调用 LLM (普通文本生成) --- llm_content = None try: prompt = f"{prompt}" llm_content, (reasoning_content, _) = await self.planner_llm.generate_response_async(prompt=prompt) logger.info(f"{self.log_prefix}规划器原始提示词: {prompt}") logger.info(f"{self.log_prefix}规划器原始响应: {llm_content}") logger.info(f"{self.log_prefix}规划器推理: {reasoning_content}") except Exception as req_e: logger.error(f"{self.log_prefix}LLM 请求执行失败: {req_e}") reasoning = f"LLM 请求失败,你的模型出现问题: {req_e}" action = "no_reply" if llm_content: try: fixed_json_string = repair_json(llm_content) if isinstance(fixed_json_string, str): try: parsed_json = json.loads(fixed_json_string) except json.JSONDecodeError as decode_error: logger.error(f"JSON解析错误: {str(decode_error)}") parsed_json = {} else: # 如果repair_json直接返回了字典对象,直接使用 parsed_json = fixed_json_string # 提取决策,提供默认值 extracted_action = parsed_json.get("action", "no_reply") extracted_reasoning = "" # 将所有其他属性添加到action_data action_data = {} for key, value in parsed_json.items(): if key not in ["action", "reasoning"]: action_data[key] = value action_data["identity"] = self_info extra_info_block = "\n".join(extra_info) extra_info_block += f"\n{structured_info}" if extra_info or structured_info: extra_info_block = f"以下是一些额外的信息,现在请你阅读以下内容,进行决策\n{extra_info_block}\n以上是一些额外的信息,现在请你阅读以下内容,进行决策" else: extra_info_block = "" action_data["extra_info_block"] = extra_info_block if relation_info: action_data["relation_info_block"] = relation_info # 对于reply动作不需要额外处理,因为相关字段已经在上面的循环中添加到action_data if extracted_action not in current_available_actions: logger.warning( f"{self.log_prefix}LLM 返回了当前不可用或无效的动作: '{extracted_action}' (可用: {list(current_available_actions.keys())}),将强制使用 'no_reply'" ) action = "no_reply" reasoning = f"LLM 返回了当前不可用的动作 '{extracted_action}' (可用: {list(current_available_actions.keys())})。原始理由: {extracted_reasoning}" else: # 动作有效且可用 action = extracted_action reasoning = extracted_reasoning except Exception as json_e: logger.warning(f"{self.log_prefix}解析LLM响应JSON失败 {json_e}. LLM原始输出: '{llm_content}'") traceback.print_exc() reasoning = f"解析LLM响应JSON失败: {json_e}. 将使用默认动作 'no_reply'." action = "no_reply" except Exception as outer_e: logger.error(f"{self.log_prefix}Planner 处理过程中发生意外错误,规划失败,将执行 no_reply: {outer_e}") traceback.print_exc() action = "no_reply" reasoning = f"Planner 内部处理错误: {outer_e}" # 恢复到默认动作集 self.action_manager.restore_actions() logger.debug( f"{self.log_prefix}规划后恢复到默认动作集, 当前可用: {list(self.action_manager.get_using_actions().keys())}" ) action_result = {"action_type": action, "action_data": action_data, "reasoning": reasoning} plan_result = { "action_result": action_result, # "extra_info_block": extra_info_block, "current_mind": current_mind, "observed_messages": observed_messages, "action_prompt": prompt, } return plan_result async def build_planner_prompt( self, self_info_block: str, relation_info_block: str, is_group_chat: bool, # Now passed as argument chat_target_info: Optional[dict], # Now passed as argument observed_messages_str: str, structured_info: Optional[str], current_available_actions: Dict[str, ActionInfo], cycle_info: Optional[str], extra_info: list[str], running_memorys: List[Dict[str, Any]], ) -> str: """构建 Planner LLM 的提示词 (获取模板并填充数据)""" try: if relation_info_block: relation_info_block = f"以下是你和别人的关系描述:\n{relation_info_block}" else: relation_info_block = "" memory_str = "" if running_memorys: memory_str = "以下是当前在聊天中,你回忆起的记忆:\n" for running_memory in running_memorys: memory_str += f"{running_memory['content']}\n" chat_context_description = "你现在正在一个群聊中" chat_target_name = None # Only relevant for private if not is_group_chat and chat_target_info: chat_target_name = ( chat_target_info.get("person_name") or chat_target_info.get("user_nickname") or "对方" ) chat_context_description = f"你正在和 {chat_target_name} 私聊" chat_content_block = "" if observed_messages_str: chat_content_block = f"聊天记录:\n{observed_messages_str}" else: chat_content_block = "你还未开始聊天" # mind_info_block = "" # if current_mind: # mind_info_block = f"对聊天的规划:{current_mind}" # else: # mind_info_block = "你刚参与聊天" personality_block = get_individuality().get_prompt(x_person=2, level=2) action_options_block = "" for using_actions_name, using_actions_info in current_available_actions.items(): # print(using_actions_name) # print(using_actions_info) # print(using_actions_info["parameters"]) # print(using_actions_info["require"]) # print(using_actions_info["description"]) using_action_prompt = await global_prompt_manager.get_prompt_async("action_prompt") if using_actions_info["parameters"]: param_text = "\n" for param_name, param_description in using_actions_info["parameters"].items(): param_text += f' "{param_name}":"{param_description}"\n' param_text = param_text.rstrip("\n") else: param_text = "" require_text = "" for require_item in using_actions_info["require"]: require_text += f"- {require_item}\n" require_text = require_text.rstrip("\n") using_action_prompt = using_action_prompt.format( action_name=using_actions_name, action_description=using_actions_info["description"], action_parameters=param_text, action_require=require_text, ) action_options_block += using_action_prompt extra_info_block = "\n".join(extra_info) extra_info_block += f"\n{structured_info}" if extra_info or structured_info: extra_info_block = f"以下是一些额外的信息,现在请你阅读以下内容,进行决策\n{extra_info_block}\n以上是一些额外的信息,现在请你阅读以下内容,进行决策" else: extra_info_block = "" # moderation_prompt_block = "请不要输出违法违规内容,不要输出色情,暴力,政治相关内容,如有敏感内容,请规避。" moderation_prompt_block = "" # 获取当前时间 time_block = f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}" planner_prompt_template = await global_prompt_manager.get_prompt_async("simple_planner_prompt") prompt = planner_prompt_template.format( relation_info_block=relation_info_block, self_info_block=self_info_block, memory_str=memory_str, time_block=time_block, # bot_name=global_config.bot.nickname, prompt_personality=personality_block, chat_context_description=chat_context_description, chat_content_block=chat_content_block, # mind_info_block=mind_info_block, cycle_info_block=cycle_info, action_options_text=action_options_block, # action_available_block=action_available_block, extra_info_block=extra_info_block, moderation_prompt=moderation_prompt_block, ) return prompt except Exception as e: logger.error(f"构建 Planner 提示词时出错: {e}") logger.error(traceback.format_exc()) return "构建 Planner Prompt 时出错" init_prompt()