import json import time from typing import List, Union from .global_logger import logger from . import prompt_template from .knowledge_lib import INVALID_ENTITY from src.llm_models.utils_model import LLMRequest from json_repair import repair_json def _extract_json_from_text(text: str) -> dict: """从文本中提取JSON数据的高容错方法""" try: fixed_json = repair_json(text) if isinstance(fixed_json, str): parsed_json = json.loads(fixed_json) else: parsed_json = fixed_json if isinstance(parsed_json, list) and parsed_json: parsed_json = parsed_json[0] if isinstance(parsed_json, dict): return parsed_json except Exception as e: logger.error(f"JSON提取失败: {e}, 原始文本: {text[:100]}...") def _entity_extract(llm_req: LLMRequest, paragraph: str) -> List[str]: """对段落进行实体提取,返回提取出的实体列表(JSON格式)""" entity_extract_context = prompt_template.build_entity_extract_context(paragraph) response, (reasoning_content, model_name) = llm_req.generate_response_async(entity_extract_context) entity_extract_result = _extract_json_from_text(response) # 尝试load JSON数据 json.loads(entity_extract_result) entity_extract_result = [ entity for entity in entity_extract_result if (entity is not None) and (entity != "") and (entity not in INVALID_ENTITY) ] if len(entity_extract_result) == 0: raise Exception("实体提取结果为空") return entity_extract_result def _rdf_triple_extract(llm_req: LLMRequest, paragraph: str, entities: list) -> List[List[str]]: """对段落进行实体提取,返回提取出的实体列表(JSON格式)""" rdf_extract_context = prompt_template.build_rdf_triple_extract_context( paragraph, entities=json.dumps(entities, ensure_ascii=False) ) response, (reasoning_content, model_name) = llm_req.generate_response_async(rdf_extract_context) entity_extract_result = _extract_json_from_text(response) # 尝试load JSON数据 json.loads(entity_extract_result) for triple in entity_extract_result: if len(triple) != 3 or (triple[0] is None or triple[1] is None or triple[2] is None) or "" in triple: raise Exception("RDF提取结果格式错误") return entity_extract_result def info_extract_from_str( llm_client_for_ner: LLMRequest, llm_client_for_rdf: LLMRequest, paragraph: str ) -> Union[tuple[None, None], tuple[list[str], list[list[str]]]]: try_count = 0 while True: try: entity_extract_result = _entity_extract(llm_client_for_ner, paragraph) break except Exception as e: logger.warning(f"实体提取失败,错误信息:{e}") try_count += 1 if try_count < 3: logger.warning("将于5秒后重试") time.sleep(5) else: logger.error("实体提取失败,已达最大重试次数") return None, None try_count = 0 while True: try: rdf_triple_extract_result = _rdf_triple_extract(llm_client_for_rdf, paragraph, entity_extract_result) break except Exception as e: logger.warning(f"实体提取失败,错误信息:{e}") try_count += 1 if try_count < 3: logger.warning("将于5秒后重试") time.sleep(5) else: logger.error("实体提取失败,已达最大重试次数") return None, None return entity_extract_result, rdf_triple_extract_result