import time from src.common.logger import get_logger from src.config.config import global_config, model_config from src.chat.message_receive.chat_stream import get_chat_manager from src.chat.utils.prompt_builder import Prompt, global_prompt_manager from src.chat.utils.chat_message_builder import build_readable_messages, get_raw_msg_by_timestamp_with_chat_inclusive from src.llm_models.utils_model import LLMRequest from src.manager.async_task_manager import AsyncTask, async_task_manager logger = get_logger("mood") def init_prompt(): Prompt( """ {chat_talking_prompt} 以上是群里正在进行的聊天记录 {identity_block} 你先前的情绪状态是:{mood_state} 你的情绪特点是:{emotion_style} 现在,请你根据先前的情绪状态和现在的聊天内容,总结推断你现在的情绪状态 请只输出新的情绪状态,不要输出其他内容: """, "get_mood_prompt", ) Prompt( """ {chat_talking_prompt} 以上是群里最近的聊天记录 {identity_block} 你之前的情绪状态是:{mood_state} 距离你上次关注群里消息已经过去了一段时间,你冷静了下来,请你输出一句话描述你现在的情绪状态 你的情绪特点是:{emotion_style} 请只输出新的情绪状态,不要输出其他内容: """, "regress_mood_prompt", ) class ChatMood: def __init__(self, chat_id: str): self.chat_id: str = chat_id chat_manager = get_chat_manager() self.chat_stream = chat_manager.get_stream(self.chat_id) if not self.chat_stream: raise ValueError(f"Chat stream for chat_id {chat_id} not found") self.log_prefix = f"[{self.chat_stream.group_info.group_name if self.chat_stream.group_info else self.chat_stream.user_info.user_nickname}]" self.mood_state: str = "感觉很平静" self.regression_count: int = 0 self.mood_model = LLMRequest(model_set=model_config.model_task_config.utils, request_type="mood") self.last_change_time: float = 0 async def get_mood(self) -> str: self.regression_count = 0 current_time = time.time() logger.info(f"{self.log_prefix} 获取情绪状态") message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive( chat_id=self.chat_id, timestamp_start=self.last_change_time, timestamp_end=current_time, limit=int(global_config.chat.max_context_size / 3), limit_mode="last", ) chat_talking_prompt = build_readable_messages( message_list_before_now, replace_bot_name=True, timestamp_mode="normal_no_YMD", read_mark=0.0, truncate=True, show_actions=True, ) bot_name = global_config.bot.nickname if global_config.bot.alias_names: bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}" else: bot_nickname = "" identity_block = f"你的名字是{bot_name}{bot_nickname}" prompt = await global_prompt_manager.format_prompt( "get_mood_prompt", chat_talking_prompt=chat_talking_prompt, identity_block=identity_block, mood_state=self.mood_state, emotion_style=global_config.mood.emotion_style, ) response, (reasoning_content, _, _) = await self.mood_model.generate_response_async( prompt=prompt, temperature=0.7 ) if global_config.debug.show_prompt: logger.info(f"{self.log_prefix} prompt: {prompt}") logger.info(f"{self.log_prefix} response: {response}") logger.info(f"{self.log_prefix} reasoning_content: {reasoning_content}") logger.info(f"{self.log_prefix} 情绪状态更新为: {response}") self.mood_state = response self.last_change_time = current_time return response async def regress_mood(self): message_time = time.time() message_list_before_now = get_raw_msg_by_timestamp_with_chat_inclusive( chat_id=self.chat_id, timestamp_start=self.last_change_time, timestamp_end=message_time, limit=15, limit_mode="last", ) chat_talking_prompt = build_readable_messages( message_list_before_now, replace_bot_name=True, timestamp_mode="normal_no_YMD", read_mark=0.0, truncate=True, show_actions=True, ) bot_name = global_config.bot.nickname if global_config.bot.alias_names: bot_nickname = f",也有人叫你{','.join(global_config.bot.alias_names)}" else: bot_nickname = "" identity_block = f"你的名字是{bot_name}{bot_nickname}" prompt = await global_prompt_manager.format_prompt( "regress_mood_prompt", chat_talking_prompt=chat_talking_prompt, identity_block=identity_block, mood_state=self.mood_state, emotion_style=global_config.mood.emotion_style, ) response, (reasoning_content, _, _) = await self.mood_model.generate_response_async( prompt=prompt, temperature=0.7 ) if global_config.debug.show_prompt: logger.info(f"{self.log_prefix} prompt: {prompt}") logger.info(f"{self.log_prefix} response: {response}") logger.info(f"{self.log_prefix} reasoning_content: {reasoning_content}") logger.info(f"{self.log_prefix} 情绪状态转变为: {response}") self.mood_state = response self.regression_count += 1 class MoodRegressionTask(AsyncTask): def __init__(self, mood_manager: "MoodManager"): super().__init__(task_name="MoodRegressionTask", run_interval=45) self.mood_manager = mood_manager async def run(self): logger.debug("开始情绪回归任务...") now = time.time() for mood in self.mood_manager.mood_list: if mood.last_change_time == 0: continue if now - mood.last_change_time > 200: if mood.regression_count >= 2: continue logger.debug(f"{mood.log_prefix} 开始情绪回归, 第 {mood.regression_count + 1} 次") await mood.regress_mood() class MoodManager: def __init__(self): self.mood_list: list[ChatMood] = [] """当前情绪状态""" self.task_started: bool = False async def start(self): """启动情绪回归后台任务""" if self.task_started: return task = MoodRegressionTask(self) await async_task_manager.add_task(task) self.task_started = True logger.info("情绪回归任务已启动") def get_mood_by_chat_id(self, chat_id: str) -> ChatMood: for mood in self.mood_list: if mood.chat_id == chat_id: return mood new_mood = ChatMood(chat_id) self.mood_list.append(new_mood) return new_mood def reset_mood_by_chat_id(self, chat_id: str): for mood in self.mood_list: if mood.chat_id == chat_id: mood.mood_state = "感觉很平静" mood.regression_count = 0 return self.mood_list.append(ChatMood(chat_id)) init_prompt() mood_manager = MoodManager() """全局情绪管理器"""