import time from typing import List, Optional, Tuple, Union import random from ....common.database import db from ...models.utils_model import LLM_request from ...config.config import global_config from ...chat.message import MessageRecv, MessageThinking from .reasoning_prompt_builder import prompt_builder from ...chat.utils import process_llm_response from src.common.logger import get_module_logger, LogConfig, LLM_STYLE_CONFIG # 定义日志配置 llm_config = LogConfig( # 使用消息发送专用样式 console_format=LLM_STYLE_CONFIG["console_format"], file_format=LLM_STYLE_CONFIG["file_format"], ) logger = get_module_logger("llm_generator", config=llm_config) class ResponseGenerator: def __init__(self): self.model_reasoning = LLM_request( model=global_config.llm_reasoning, temperature=0.7, max_tokens=3000, request_type="response_reasoning", ) self.model_normal = LLM_request( model=global_config.llm_normal, temperature=0.8, max_tokens=256, request_type="response_reasoning" ) self.model_sum = LLM_request( model=global_config.llm_summary_by_topic, temperature=0.7, max_tokens=3000, request_type="relation" ) self.current_model_type = "r1" # 默认使用 R1 self.current_model_name = "unknown model" async def generate_response(self, message: MessageThinking) -> Optional[Union[str, List[str]]]: """根据当前模型类型选择对应的生成函数""" # 从global_config中获取模型概率值并选择模型 if random.random() < global_config.MODEL_R1_PROBABILITY: self.current_model_type = "深深地" current_model = self.model_reasoning else: self.current_model_type = "浅浅的" current_model = self.model_normal logger.info( f"{self.current_model_type}思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}" ) # noqa: E501 model_response = await self._generate_response_with_model(message, current_model) # print(f"raw_content: {model_response}") if model_response: logger.info(f"{global_config.BOT_NICKNAME}的回复是:{model_response}") model_response = await self._process_response(model_response) return model_response else: logger.info(f"{self.current_model_type}思考,失败") return None async def _generate_response_with_model(self, message: MessageThinking, model: LLM_request): sender_name = "" if message.chat_stream.user_info.user_cardname and message.chat_stream.user_info.user_nickname: sender_name = ( f"[({message.chat_stream.user_info.user_id}){message.chat_stream.user_info.user_nickname}]" f"{message.chat_stream.user_info.user_cardname}" ) elif message.chat_stream.user_info.user_nickname: sender_name = f"({message.chat_stream.user_info.user_id}){message.chat_stream.user_info.user_nickname}" else: sender_name = f"用户({message.chat_stream.user_info.user_id})" logger.debug("开始使用生成回复-2") # 构建prompt timer1 = time.time() prompt = await prompt_builder._build_prompt( message.chat_stream, message_txt=message.processed_plain_text, sender_name=sender_name, stream_id=message.chat_stream.stream_id, ) timer2 = time.time() logger.info(f"构建prompt时间: {timer2 - timer1}秒") try: content, reasoning_content, self.current_model_name = await model.generate_response(prompt) except Exception: logger.exception("生成回复时出错") return None # 保存到数据库 self._save_to_db( message=message, sender_name=sender_name, prompt=prompt, content=content, reasoning_content=reasoning_content, # reasoning_content_check=reasoning_content_check if global_config.enable_kuuki_read else "" ) return content # def _save_to_db(self, message: Message, sender_name: str, prompt: str, prompt_check: str, # content: str, content_check: str, reasoning_content: str, reasoning_content_check: str): def _save_to_db( self, message: MessageRecv, sender_name: str, prompt: str, content: str, reasoning_content: str, ): """保存对话记录到数据库""" db.reasoning_logs.insert_one( { "time": time.time(), "chat_id": message.chat_stream.stream_id, "user": sender_name, "message": message.processed_plain_text, "model": self.current_model_name, "reasoning": reasoning_content, "response": content, "prompt": prompt, } ) async def _get_emotion_tags(self, content: str, processed_plain_text: str): """提取情感标签,结合立场和情绪""" try: # 构建提示词,结合回复内容、被回复的内容以及立场分析 prompt = f""" 请严格根据以下对话内容,完成以下任务: 1. 判断回复者对被回复者观点的直接立场: - "支持":明确同意或强化被回复者观点 - "反对":明确反驳或否定被回复者观点 - "中立":不表达明确立场或无关回应 2. 从"开心,愤怒,悲伤,惊讶,平静,害羞,恐惧,厌恶,困惑"中选出最匹配的1个情感标签 3. 按照"立场-情绪"的格式直接输出结果,例如:"反对-愤怒" 4. 考虑回复者的人格设定为{global_config.personality_core} 对话示例: 被回复:「A就是笨」 回复:「A明明很聪明」 → 反对-愤怒 当前对话: 被回复:「{processed_plain_text}」 回复:「{content}」 输出要求: - 只需输出"立场-情绪"结果,不要解释 - 严格基于文字直接表达的对立关系判断 """ # 调用模型生成结果 result, _, _ = await self.model_sum.generate_response(prompt) result = result.strip() # 解析模型输出的结果 if "-" in result: stance, emotion = result.split("-", 1) valid_stances = ["支持", "反对", "中立"] valid_emotions = ["开心", "愤怒", "悲伤", "惊讶", "害羞", "平静", "恐惧", "厌恶", "困惑"] if stance in valid_stances and emotion in valid_emotions: return stance, emotion # 返回有效的立场-情绪组合 else: logger.debug(f"无效立场-情感组合:{result}") return "中立", "平静" # 默认返回中立-平静 else: logger.debug(f"立场-情感格式错误:{result}") return "中立", "平静" # 格式错误时返回默认值 except Exception as e: logger.debug(f"获取情感标签时出错: {e}") return "中立", "平静" # 出错时返回默认值 async def _process_response(self, content: str) -> Tuple[List[str], List[str]]: """处理响应内容,返回处理后的内容和情感标签""" if not content: return None, [] processed_response = process_llm_response(content) # print(f"得到了处理后的llm返回{processed_response}") return processed_response