import json import time from typing import List, Dict, Optional, Any, Tuple from json_repair import repair_json from src.llm_models.utils_model import LLMRequest from src.config.config import global_config, model_config from src.common.logger import get_logger from src.common.database.database_model import Expression from src.chat.utils.prompt_builder import Prompt, global_prompt_manager from src.bw_learner.learner_utils import weighted_sample from src.chat.message_receive.chat_stream import get_chat_manager logger = get_logger("expression_selector") def init_prompt(): expression_evaluation_prompt = """{chat_observe_info} 你的名字是{bot_name}{target_message} {reply_reason_block} 以下是可选的表达情境: {all_situations} 请你分析聊天内容的语境、情绪、话题类型,从上述情境中选择最适合当前聊天情境的,最多{max_num}个情境。 考虑因素包括: 1.聊天的情绪氛围(轻松、严肃、幽默等) 2.话题类型(日常、技术、游戏、情感等) 3.情境与当前语境的匹配度 {target_message_extra_block} 请以JSON格式输出,只需要输出选中的情境编号: 例如: {{ "selected_situations": [2, 3, 5, 7, 19] }} 请严格按照JSON格式输出,不要包含其他内容: """ Prompt(expression_evaluation_prompt, "expression_evaluation_prompt") class ExpressionSelector: def __init__(self): self.llm_model = LLMRequest( model_set=model_config.model_task_config.tool_use, request_type="expression.selector" ) def can_use_expression_for_chat(self, chat_id: str) -> bool: """ 检查指定聊天流是否允许使用表达 Args: chat_id: 聊天流ID Returns: bool: 是否允许使用表达 """ try: use_expression, _, _ = global_config.expression.get_expression_config_for_chat(chat_id) return use_expression except Exception as e: logger.error(f"检查表达使用权限失败: {e}") return False @staticmethod def _parse_stream_config_to_chat_id(stream_config_str: str) -> Optional[str]: """解析'platform:id:type'为chat_id,直接使用 ChatManager 提供的接口""" try: parts = stream_config_str.split(":") if len(parts) != 3: return None platform = parts[0] id_str = parts[1] stream_type = parts[2] is_group = stream_type == "group" # 统一通过 chat_manager 生成 stream_id,避免各处自行实现哈希逻辑 return get_chat_manager().get_stream_id(platform, str(id_str), is_group=is_group) except Exception: return None def get_related_chat_ids(self, chat_id: str) -> List[str]: """根据expression_groups配置,获取与当前chat_id相关的所有chat_id(包括自身)""" groups = global_config.expression.expression_groups # 检查是否存在全局共享组(包含"*"的组) global_group_exists = any("*" in group for group in groups) if global_group_exists: # 如果存在全局共享组,则返回所有可用的chat_id all_chat_ids = set() for group in groups: for stream_config_str in group: if chat_id_candidate := self._parse_stream_config_to_chat_id(stream_config_str): all_chat_ids.add(chat_id_candidate) return list(all_chat_ids) if all_chat_ids else [chat_id] # 否则使用现有的组逻辑 for group in groups: group_chat_ids = [] for stream_config_str in group: if chat_id_candidate := self._parse_stream_config_to_chat_id(stream_config_str): group_chat_ids.append(chat_id_candidate) if chat_id in group_chat_ids: return group_chat_ids return [chat_id] def _select_expressions_simple(self, chat_id: str, max_num: int) -> Tuple[List[Dict[str, Any]], List[int]]: """ 简单模式:只选择 count > 1 的项目,要求至少有10个才进行选择,随机选5个,不进行LLM选择 Args: chat_id: 聊天流ID max_num: 最大选择数量(此参数在此模式下不使用,固定选择5个) Returns: Tuple[List[Dict[str, Any]], List[int]]: 选中的表达方式列表和ID列表 """ try: # 支持多chat_id合并抽选 related_chat_ids = self.get_related_chat_ids(chat_id) # 查询所有相关chat_id的表达方式,排除 rejected=1 的,且只选择 count > 1 的 # 如果 expression_checked_only 为 True,则只选择 checked=True 且 rejected=False 的 base_conditions = (Expression.chat_id.in_(related_chat_ids)) & (~Expression.rejected) & (Expression.count > 1) if global_config.expression.expression_checked_only: base_conditions = base_conditions & (Expression.checked) style_query = Expression.select().where(base_conditions) style_exprs = [ { "id": expr.id, "situation": expr.situation, "style": expr.style, "last_active_time": expr.last_active_time, "source_id": expr.chat_id, "create_date": expr.create_date if expr.create_date is not None else expr.last_active_time, "count": expr.count if getattr(expr, "count", None) is not None else 1, "checked": expr.checked if getattr(expr, "checked", None) is not None else False, } for expr in style_query ] # 要求至少有一定数量的 count > 1 的表达方式才进行“完整简单模式”选择 min_required = 8 if len(style_exprs) < min_required: # 高 count 样本不足:如果还有候选,就降级为随机选 3 个;如果一个都没有,则直接返回空 if not style_exprs: logger.info( f"聊天流 {chat_id} 没有满足 count > 1 且未被拒绝的表达方式,简单模式不进行选择" ) # 完全没有高 count 样本时,退化为全量随机抽样(不进入LLM流程) fallback_num = min(3, max_num) if max_num > 0 else 3 fallback_selected = self._random_expressions(chat_id, fallback_num) if fallback_selected: self.update_expressions_last_active_time(fallback_selected) selected_ids = [expr["id"] for expr in fallback_selected] logger.info( f"聊天流 {chat_id} 使用简单模式降级随机抽选 {len(fallback_selected)} 个表达(无 count>1 样本)" ) return fallback_selected, selected_ids return [], [] logger.info( f"聊天流 {chat_id} count > 1 的表达方式不足 {min_required} 个(实际 {len(style_exprs)} 个)," f"简单模式降级为随机选择 3 个" ) select_count = min(3, len(style_exprs)) else: # 高 count 数量达标时,固定选择 5 个 select_count = 5 import random selected_style = random.sample(style_exprs, select_count) # 更新last_active_time if selected_style: self.update_expressions_last_active_time(selected_style) selected_ids = [expr["id"] for expr in selected_style] logger.debug( f"think_level=0: 从 {len(style_exprs)} 个 count>1 的表达方式中随机选择了 {len(selected_style)} 个" ) return selected_style, selected_ids except Exception as e: logger.error(f"简单模式选择表达方式失败: {e}") return [], [] def _random_expressions(self, chat_id: str, total_num: int) -> List[Dict[str, Any]]: """ 随机选择表达方式 Args: chat_id: 聊天室ID total_num: 需要选择的数量 Returns: List[Dict[str, Any]]: 随机选择的表达方式列表 """ try: # 支持多chat_id合并抽选 related_chat_ids = self.get_related_chat_ids(chat_id) # 优化:一次性查询所有相关chat_id的表达方式,排除 rejected=1 的表达 # 如果 expression_checked_only 为 True,则只选择 checked=True 且 rejected=False 的 base_conditions = (Expression.chat_id.in_(related_chat_ids)) & (~Expression.rejected) if global_config.expression.expression_checked_only: base_conditions = base_conditions & (Expression.checked) style_query = Expression.select().where(base_conditions) style_exprs = [ { "id": expr.id, "situation": expr.situation, "style": expr.style, "last_active_time": expr.last_active_time, "source_id": expr.chat_id, "create_date": expr.create_date if expr.create_date is not None else expr.last_active_time, "count": expr.count if getattr(expr, "count", None) is not None else 1, "checked": expr.checked if getattr(expr, "checked", None) is not None else False, } for expr in style_query ] # 随机抽样 if style_exprs: selected_style = weighted_sample(style_exprs, total_num) else: selected_style = [] return selected_style except Exception as e: logger.error(f"随机选择表达方式失败: {e}") return [] async def select_suitable_expressions( self, chat_id: str, chat_info: str, max_num: int = 10, target_message: Optional[str] = None, reply_reason: Optional[str] = None, think_level: int = 1, ) -> Tuple[List[Dict[str, Any]], List[int]]: """ 选择适合的表达方式(使用classic模式:随机选择+LLM选择) Args: chat_id: 聊天流ID chat_info: 聊天内容信息 max_num: 最大选择数量 target_message: 目标消息内容 reply_reason: planner给出的回复理由 think_level: 思考级别,0/1 Returns: Tuple[List[Dict[str, Any]], List[int]]: 选中的表达方式列表和ID列表 """ # 检查是否允许在此聊天流中使用表达 if not self.can_use_expression_for_chat(chat_id): logger.debug(f"聊天流 {chat_id} 不允许使用表达,返回空列表") return [], [] # 使用classic模式(随机选择+LLM选择) logger.debug(f"使用classic模式为聊天流 {chat_id} 选择表达方式,think_level={think_level}") return await self._select_expressions_classic( chat_id, chat_info, max_num, target_message, reply_reason, think_level ) async def _select_expressions_classic( self, chat_id: str, chat_info: str, max_num: int = 10, target_message: Optional[str] = None, reply_reason: Optional[str] = None, think_level: int = 1, ) -> Tuple[List[Dict[str, Any]], List[int]]: """ classic模式:随机选择+LLM选择 Args: chat_id: 聊天流ID chat_info: 聊天内容信息 max_num: 最大选择数量 target_message: 目标消息内容 reply_reason: planner给出的回复理由 think_level: 思考级别,0/1 Returns: Tuple[List[Dict[str, Any]], List[int]]: 选中的表达方式列表和ID列表 """ try: # think_level == 0: 只选择 count > 1 的项目,随机选10个,不进行LLM选择 if think_level == 0: return self._select_expressions_simple(chat_id, max_num) # think_level == 1: 先选高count,再从所有表达方式中随机抽样 # 1. 获取所有表达方式并分离 count > 1 和 count <= 1 的 related_chat_ids = self.get_related_chat_ids(chat_id) # 如果 expression_checked_only 为 True,则只选择 checked=True 且 rejected=False 的 base_conditions = (Expression.chat_id.in_(related_chat_ids)) & (~Expression.rejected) if global_config.expression.expression_checked_only: base_conditions = base_conditions & (Expression.checked) style_query = Expression.select().where(base_conditions) all_style_exprs = [ { "id": expr.id, "situation": expr.situation, "style": expr.style, "last_active_time": expr.last_active_time, "source_id": expr.chat_id, "create_date": expr.create_date if expr.create_date is not None else expr.last_active_time, "count": expr.count if getattr(expr, "count", None) is not None else 1, "checked": expr.checked if getattr(expr, "checked", None) is not None else False, } for expr in style_query ] # 分离 count > 1 和 count <= 1 的表达方式 high_count_exprs = [expr for expr in all_style_exprs if (expr.get("count", 1) or 1) > 1] # 根据 think_level 设置要求(仅支持 0/1,0 已在上方返回) min_high_count = 10 min_total_count = 10 select_high_count = 5 select_random_count = 5 # 检查数量要求 # 对于高 count 表达:如果数量不足,不再直接停止,而是仅跳过“高 count 优先选择” if len(high_count_exprs) < min_high_count: logger.info( f"聊天流 {chat_id} count > 1 的表达方式不足 {min_high_count} 个(实际 {len(high_count_exprs)} 个)," f"将跳过高 count 优先选择,仅从全部表达中随机抽样" ) high_count_valid = False else: high_count_valid = True # 总量不足仍然直接返回,避免样本过少导致选择质量过低 if len(all_style_exprs) < min_total_count: logger.info( f"聊天流 {chat_id} 总表达方式不足 {min_total_count} 个(实际 {len(all_style_exprs)} 个),不进行选择" ) return [], [] # 先选取高count的表达方式(如果数量达标) if high_count_valid: selected_high = weighted_sample(high_count_exprs, min(len(high_count_exprs), select_high_count)) else: selected_high = [] # 然后从所有表达方式中随机抽样(使用加权抽样) remaining_num = select_random_count selected_random = weighted_sample(all_style_exprs, min(len(all_style_exprs), remaining_num)) # 合并候选池(去重,避免重复) candidate_exprs = selected_high.copy() candidate_ids = {expr["id"] for expr in candidate_exprs} for expr in selected_random: if expr["id"] not in candidate_ids: candidate_exprs.append(expr) candidate_ids.add(expr["id"]) # 打乱顺序,避免高count的都在前面 import random random.shuffle(candidate_exprs) # 2. 构建所有表达方式的索引和情境列表 all_expressions: List[Dict[str, Any]] = [] all_situations: List[str] = [] # 添加style表达方式 for expr in candidate_exprs: expr = expr.copy() all_expressions.append(expr) all_situations.append(f"{len(all_expressions)}.当 {expr['situation']} 时,使用 {expr['style']}") if not all_expressions: logger.warning("没有找到可用的表达方式") return [], [] all_situations_str = "\n".join(all_situations) if target_message: target_message_str = f',现在你想要对这条消息进行回复:"{target_message}"' target_message_extra_block = "4.考虑你要回复的目标消息" else: target_message_str = "" target_message_extra_block = "" chat_context = f"以下是正在进行的聊天内容:{chat_info}" # 构建reply_reason块 if reply_reason: reply_reason_block = f"你的回复理由是:{reply_reason}" chat_context = "" else: reply_reason_block = "" # 3. 构建prompt(只包含情境,不包含完整的表达方式) prompt = (await global_prompt_manager.get_prompt_async("expression_evaluation_prompt")).format( bot_name=global_config.bot.nickname, chat_observe_info=chat_context, all_situations=all_situations_str, max_num=max_num, target_message=target_message_str, target_message_extra_block=target_message_extra_block, reply_reason_block=reply_reason_block, ) # 4. 调用LLM content, (reasoning_content, model_name, _) = await self.llm_model.generate_response_async(prompt=prompt) # print(prompt) # print(content) if not content: logger.warning("LLM返回空结果") return [], [] # 5. 解析结果 result = repair_json(content) if isinstance(result, str): result = json.loads(result) if not isinstance(result, dict) or "selected_situations" not in result: logger.error("LLM返回格式错误") logger.info(f"LLM返回结果: \n{content}") return [], [] selected_indices = result["selected_situations"] # 根据索引获取完整的表达方式 valid_expressions: List[Dict[str, Any]] = [] selected_ids = [] for idx in selected_indices: if isinstance(idx, int) and 1 <= idx <= len(all_expressions): expression = all_expressions[idx - 1] # 索引从1开始 selected_ids.append(expression["id"]) valid_expressions.append(expression) # 对选中的所有表达方式,更新last_active_time if valid_expressions: self.update_expressions_last_active_time(valid_expressions) logger.debug(f"从{len(all_expressions)}个情境中选择了{len(valid_expressions)}个") return valid_expressions, selected_ids except Exception as e: logger.error(f"classic模式处理表达方式选择时出错: {e}") return [], [] def update_expressions_last_active_time(self, expressions_to_update: List[Dict[str, Any]]): """对一批表达方式更新last_active_time""" if not expressions_to_update: return updates_by_key = {} for expr in expressions_to_update: source_id: str = expr.get("source_id") # type: ignore situation: str = expr.get("situation") # type: ignore style: str = expr.get("style") # type: ignore if not source_id or not situation or not style: logger.warning(f"表达方式缺少必要字段,无法更新: {expr}") continue key = (source_id, situation, style) if key not in updates_by_key: updates_by_key[key] = expr for chat_id, situation, style in updates_by_key: query = Expression.select().where( (Expression.chat_id == chat_id) & (Expression.situation == situation) & (Expression.style == style) ) if query.exists(): expr_obj = query.get() expr_obj.last_active_time = time.time() expr_obj.save() logger.debug("表达方式激活: 更新last_active_time in db") init_prompt() try: expression_selector = ExpressionSelector() except Exception as e: logger.error(f"ExpressionSelector初始化失败: {e}")