from typing import List, Optional from ...models.utils_model import LLMRequest from ....config.config import global_config from ...chat.message import MessageRecv from .heartFC__prompt_builder import prompt_builder from ...chat.utils import process_llm_response from src.common.logger import get_module_logger, LogConfig, LLM_STYLE_CONFIG from src.plugins.respon_info_catcher.info_catcher import info_catcher_manager from ...utils.timer_calculater import Timer from src.plugins.moods.moods import MoodManager # 定义日志配置 llm_config = LogConfig( # 使用消息发送专用样式 console_format=LLM_STYLE_CONFIG["console_format"], file_format=LLM_STYLE_CONFIG["file_format"], ) logger = get_module_logger("llm_generator", config=llm_config) class ResponseGenerator: def __init__(self): self.model_normal = LLMRequest( model=global_config.llm_normal, temperature=global_config.llm_normal["temp"], max_tokens=256, request_type="response_heartflow", ) self.model_sum = LLMRequest( model=global_config.llm_summary_by_topic, temperature=0.6, max_tokens=2000, request_type="relation" ) self.current_model_type = "r1" # 默认使用 R1 self.current_model_name = "unknown model" async def generate_response(self, message: MessageRecv, thinking_id: str,) -> Optional[List[str]]: """根据当前模型类型选择对应的生成函数""" logger.info( f"思考:{message.processed_plain_text[:30] + '...' if len(message.processed_plain_text) > 30 else message.processed_plain_text}" ) arousal_multiplier = MoodManager.get_instance().get_arousal_multiplier() with Timer() as t_generate_response: current_model = self.model_normal current_model.temperature = ( global_config.llm_normal["temp"] * arousal_multiplier ) # 激活度越高,温度越高 model_response = await self._generate_response_with_model( message, current_model, thinking_id, mode="normal" ) if model_response: logger.info( f"{global_config.BOT_NICKNAME}的回复是:{model_response},生成回复时间: {t_generate_response.human_readable}" ) model_processed_response = await self._process_response(model_response) return model_processed_response else: logger.info(f"{self.current_model_type}思考,失败") return None async def _generate_response_with_model( self, message: MessageRecv, model: LLMRequest, thinking_id: str, mode: str = "normal" ) -> str: sender_name = "" info_catcher = info_catcher_manager.get_info_catcher(thinking_id) # if message.chat_stream.user_info.user_cardname and message.chat_stream.user_info.user_nickname: # sender_name = ( # f"[({message.chat_stream.user_info.user_id}){message.chat_stream.user_info.user_nickname}]" # f"{message.chat_stream.user_info.user_cardname}" # ) # elif message.chat_stream.user_info.user_nickname: # sender_name = f"({message.chat_stream.user_info.user_id}){message.chat_stream.user_info.user_nickname}" # else: # sender_name = f"用户({message.chat_stream.user_info.user_id})" sender_name = f"<{message.chat_stream.user_info.platform}:{message.chat_stream.user_info.user_id}:{message.chat_stream.user_info.user_nickname}:{message.chat_stream.user_info.user_cardname}>" # 构建prompt with Timer() as t_build_prompt: if mode == "normal": prompt = await prompt_builder._build_prompt( message.chat_stream, message_txt=message.processed_plain_text, sender_name=sender_name, stream_id=message.chat_stream.stream_id, ) logger.info(f"构建prompt时间: {t_build_prompt.human_readable}") try: content, reasoning_content, self.current_model_name = await model.generate_response(prompt) info_catcher.catch_after_llm_generated( prompt=prompt, response=content, reasoning_content=reasoning_content, model_name=self.current_model_name ) except Exception: logger.exception("生成回复时出错") return None return content async def _get_emotion_tags(self, content: str, processed_plain_text: str): """提取情感标签,结合立场和情绪""" try: # 构建提示词,结合回复内容、被回复的内容以及立场分析 prompt = f""" 请严格根据以下对话内容,完成以下任务: 1. 判断回复者对被回复者观点的直接立场: - "支持":明确同意或强化被回复者观点 - "反对":明确反驳或否定被回复者观点 - "中立":不表达明确立场或无关回应 2. 从"开心,愤怒,悲伤,惊讶,平静,害羞,恐惧,厌恶,困惑"中选出最匹配的1个情感标签 3. 按照"立场-情绪"的格式直接输出结果,例如:"反对-愤怒" 4. 考虑回复者的人格设定为{global_config.personality_core} 对话示例: 被回复:「A就是笨」 回复:「A明明很聪明」 → 反对-愤怒 当前对话: 被回复:「{processed_plain_text}」 回复:「{content}」 输出要求: - 只需输出"立场-情绪"结果,不要解释 - 严格基于文字直接表达的对立关系判断 """ # 调用模型生成结果 result, _, _ = await self.model_sum.generate_response(prompt) result = result.strip() # 解析模型输出的结果 if "-" in result: stance, emotion = result.split("-", 1) valid_stances = ["支持", "反对", "中立"] valid_emotions = ["开心", "愤怒", "悲伤", "惊讶", "害羞", "平静", "恐惧", "厌恶", "困惑"] if stance in valid_stances and emotion in valid_emotions: return stance, emotion # 返回有效的立场-情绪组合 else: logger.debug(f"无效立场-情感组合:{result}") return "中立", "平静" # 默认返回中立-平静 else: logger.debug(f"立场-情感格式错误:{result}") return "中立", "平静" # 格式错误时返回默认值 except Exception as e: logger.debug(f"获取情感标签时出错: {e}") return "中立", "平静" # 出错时返回默认值 async def _get_emotion_tags_with_reason(self, content: str, processed_plain_text: str, reason: str): """提取情感标签,结合立场和情绪""" try: # 构建提示词,结合回复内容、被回复的内容以及立场分析 prompt = f""" 请严格根据以下对话内容,完成以下任务: 1. 判断回复者对被回复者观点的直接立场: - "支持":明确同意或强化被回复者观点 - "反对":明确反驳或否定被回复者观点 - "中立":不表达明确立场或无关回应 2. 从"开心,愤怒,悲伤,惊讶,平静,害羞,恐惧,厌恶,困惑"中选出最匹配的1个情感标签 3. 按照"立场-情绪"的格式直接输出结果,例如:"反对-愤怒" 4. 考虑回复者的人格设定为{global_config.personality_core} 对话示例: 被回复:「A就是笨」 回复:「A明明很聪明」 → 反对-愤怒 当前对话: 被回复:「{processed_plain_text}」 回复:「{content}」 原因:「{reason}」 输出要求: - 只需输出"立场-情绪"结果,不要解释 - 严格基于文字直接表达的对立关系判断 """ # 调用模型生成结果 result, _, _ = await self.model_sum.generate_response(prompt) result = result.strip() # 解析模型输出的结果 if "-" in result: stance, emotion = result.split("-", 1) valid_stances = ["支持", "反对", "中立"] valid_emotions = ["开心", "愤怒", "悲伤", "惊讶", "害羞", "平静", "恐惧", "厌恶", "困惑"] if stance in valid_stances and emotion in valid_emotions: return stance, emotion # 返回有效的立场-情绪组合 else: logger.debug(f"无效立场-情感组合:{result}") return "中立", "平静" # 默认返回中立-平静 else: logger.debug(f"立场-情感格式错误:{result}") return "中立", "平静" # 格式错误时返回默认值 except Exception as e: logger.debug(f"获取情感标签时出错: {e}") return "中立", "平静" # 出错时返回默认值 async def _process_response(self, content: str) -> List[str]: """处理响应内容,返回处理后的内容和情感标签""" if not content: return None processed_response = process_llm_response(content) # print(f"得到了处理后的llm返回{processed_response}") return processed_response